Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Algorithmen für die Leberchirurgie – weltweit sicherer operieren

17.05.2018

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer Eingriff bietet nach wie vor die besten Heilungschancen.


© Fraunhofer MEVIS

Planung und Risikoanalyse für die chirurgische Entfernung eines zentral gelegenen Lebertumors.


© Kai Michalak

Dr. Stephan Zidowitz, Alexander Köhn und Andrea Schenk haben Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Doch schon geringe Veränderungen der chirurgischen Schnittführung können dramatischen Einfluss auf das Operationsergebnis haben: Durch einen falschen Schnitt kann der Zu- oder Abfluss des Blutes in der Leber gestört und die Funktion des Organes beeinträchtigt werden. Die komplex ineinander verschränkte Gefäßanatomie ist anhand von CT- oder MRT-Bildern kaum zu durchschauen.

Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS in Bremen hat eine Software entwickelt, die radiologische Aufnahmen des Patienten analysiert. Sie generiert ein detailliertes dreidimensionales Modell der Leber und ihrer Gefäßsysteme. Ver- und Entsorgungsgebiete der Blutgefäße werden berechnet und helfen, die Risiken möglicher Schnittführungen zur Entfernung der Tumoren zu ermitteln.

Chirurgen können mit diesen Informationen ihre Operation genau vorbereiten, indem sie die optimalen Schnitte am Bildschirm planen. Die Analyse der Gefäßanatomie in der Umgebung des Tumors hilft zudem, kritische Abschnitte des geplanten Vorgehens genau zu lokalisieren.

Der Chirurg erhält sozusagen eine Risikokarte des Resektionsweges und weiß, an welchen Stellen wenig Spielraum für Abweichungen von der optimalen Schnittführung besteht, der einzuhaltende Schnittkorridor also besonders eng ist.

Die Software macht dabei auch Vorschläge für die Schnittführung. »Das sind aber nur Vorschläge, die Entscheidung muss der Chirurg oder die Chirurgin selber fällen«, sagt Dr. Andrea Schenk, Head of Liver Research bei MEVIS. Studien belegen, dass Leberoperationen mit Hilfe der MEVIS-Analyse effizienter und sicherer verlaufen. Zudem kann der Blutverlust reduziert werden. Die Analysealgorithmen machen im Einzelfall auch eine besonders heikle Operation sicher durchführbar, die in der Vergangenheit noch als zu riskant galt.

Bahnbrechende Innovation bei der Leberlebendspende

Bei der Leberlebendspende wird das Organ im Spender geteilt und ein Teil in den Empfänger verpflanzt. Nach der Operation müssen die beiden Teile in Empfänger und Spender funktionieren und wieder wachsen. Die MEVIS-Analyse der Leber zeigt den Medizinern, welche Funktionseinschränkungen aus der bei der Teilung unvermeidlichen Durchtrennung großer Gefäße folgen, und ermöglicht so Vorhersagen der postoperativen Leberfunktion bei Spender und Empfänger. Das chirurgische Vorgehen kann so optimal angepasst werden, um das Risiko des Organversagens nach der Operation zu minimieren.

Entscheidend für die Qualität der MEVIS-Analyse sind jedoch nicht allein Algorithmen und Informatik-Knowhow. Wichtig ist der intensive Austausch mit Chirurgen und Klinikexperten. »Erst durch diesen Austausch haben wir gelernt, worauf es bei der Software in der Praxis ankommt und wie wir unser System verbessern können«, erklärt Alexander Köhn.

Die Bremer Forscher scheuen dabei auch nicht den Gang in die Klinik, um die praktischen Probleme der Ärzte zu erleben. Diese stehen vor der Herausforderung, die Planungsdaten der MEVIS-Analyse in den Operationssaal zu bringen. MEVIS-Experte Köhn hat in enger Zusammenarbeit mit Ärzten der Universität Yokohama in Japan eine App für das iPad entwickelt. Dieses kann der Chirurg, steril in Folie verpackt, in den OP mitnehmen und damit während der Operation alle Planungsdaten einsehen.

Die App geht aber noch einen Schritt weiter. Sie kombiniert die Planungsdaten mit Augmented Reality. Dazu schaltet der Arzt die Kamera im iPad ein und richtet diese auf die Leber des Patienten. Das zuvor mithilfe der Algorithmen generierte dreidimensionale Abbild der Patientenleber wird dem Bild der Kamera überlagert und zeigt ortsgenau die Lage der Blutgefäße und Tumoren unter der Leberoberfläche.

Joseph-von-Fraunhofer-Preis 2018

Seit 1998 arbeiten die Fraunhofer-Forscherinnen und Forscher in einer langen Folge von Projekten an den bildverarbeitenden Algorithmen für den Einsatz in der Medizin. Die Methode ist inzwischen als MEVIS-Analyse bei Ärzten weithin bekannt und in der Praxis etabliert. Gemeinsam mit ihren Kollegen Zidowitz und Köhn hat Teamleiterin Andrea Schenk nun den Joseph-von-Fraunhofer-Preis des Jahres 2018 erhalten. Mit dem Preis würdigt die Jury neben der wissenschaftlichen Exzellenz auch die praktische Wirksamkeit der Operationsunterstützung, die langjährige Expertise des MEVIS-Teams in der Leberchirurgie sowie den gesellschaftlichen Vorbildcharakter des Forschungsprojekts.

Bianka Hofmann | Fraunhofer Forschung Kompakt
Weitere Informationen:
https://www.fraunhofer.de/de/presse/presseinformationen/2018/Mai/algorithmen-fuer-die-leberchirurgie-weltweit-sicherer-operieren.html

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Mobile Herz-Lungen-Maschine ermöglicht akute Notfallversorgung
15.11.2018 | Deutsche Gesellschaft für Thorax-, Herz- und Gefäßchirurgie e.V.

nachricht Mit Gold Krankheiten aufspüren
14.11.2018 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop-Transport von Frachten in Nanomaschinen

Max-Planck-Forscher entdecken die Nanostruktur von molekularen Zügen und den Grund für reibungslosen Transport in den „Antennen der Zelle“

Eine Zelle bewegt sich ständig umher, tastet ihre Umgebung ab und sendet Signale an andere Zellen. Das ist wichtig, damit eine Zelle richtig funktionieren kann.

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: InSight: Touchdown auf dem Mars

Am 26. November landet die NASA-Sonde InSight auf dem Mars. Erstmals wird sie die Stärke und Häufigkeit von Marsbeben messen.

Monatelanger Flug durchs All, flammender Abstieg durch die Reibungshitze der Atmosphäre und sanftes Aufsetzen auf der Oberfläche – siebenmal ist das Kunststück...

Im Focus: Weltweit erstmals Entstehung von chemischen Bindungen in Echtzeit beobachtet und simuliert

Einem Team von Physikern unter der Leitung von Prof. Dr. Wolf Gero Schmidt, Universität Paderborn, und Prof. Dr. Martin Wolf, Fritz-Haber-Institut Berlin, ist ein entscheidender Durchbruch gelungen: Sie haben weltweit zum ersten Mal und „in Echtzeit“ die Änderung der Elektronenstruktur während einer chemischen Reaktion beobachtet. Mithilfe umfangreicher Computersimulationen haben die Wissenschaftler die Ursachen und Mechanismen der Elektronenumverteilung aufgeklärt und visualisiert. Ihre Ergebnisse wurden nun in der renommierten, interdisziplinären Fachzeitschrift „Science“ veröffentlicht.

„Chemische Reaktionen sind durch die Bildung bzw. den Bruch chemischer Bindungen zwischen Atomen und den damit verbundenen Änderungen atomarer Abstände...

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Personalisierte Implantologie – 32. Kongress der DGI

19.11.2018 | Veranstaltungen

Internationale Konferenz diskutiert digitale Innovationen für die öffentliche Verwaltung

19.11.2018 | Veranstaltungen

Naturkonstanten als Hauptdarsteller

19.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Für eine neue Generation organischer Leuchtdioden: Uni Bayreuth koordiniert EU-Forschungsnetzwerk

20.11.2018 | Förderungen Preise

Nonstop-Transport von Frachten in Nanomaschinen

20.11.2018 | Biowissenschaften Chemie

Wie sich ein Kristall in Wasser löst

20.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics