Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Moment, hier war ich doch schon!“ – Wie das Gehirn Ortserinnerungen bildet

05.02.2016

Tübinger Forscher aktivieren im Experiment vormals ruhende Gedächtniszellen

Tübinger Neurowissenschaftlern ist es gelungen, ruhende Gedächtniszellen von Ratten zu aktivieren. Durch gezielte schwachelektrische Impulse konnten sie vormals inaktive Zellen im Hippocampus dazu bringen, den Ort der Impulsverabreichung wiederzuerkennen.


Körnerzellen im Gyrus dentatus einer Ratte, durch Fluoreszenzmikroskopie sichtbar gemacht (in Cyanblau)

Abbildung: (c) Burgalossi Lab

Der Hippocampus ist bei Nagetieren wie auch dem Menschen für das Gedächtnis zuständig. Die Studie des Forscherteams am Werner Reichardt Centrum für Integrative Neurowissenschaften (CIN) der Universität Tübingen gibt daher Hinweise darauf, wie in unserem Gehirn Erinnerungen gebildet werden. Die Ergebnisse wurden nun im Fachmagazin Current Biology veröffentlicht.

Das Gedächtnis ist eine der wichtigsten Funktionen unseres Gehirns. Mit seiner Hilfe können wir nicht nur unseren Enkelkindern eines Tages aus unserer Jugend erzählen. Gerade für ganz alltägliche Abläufe ist es unverzichtbar.

Es ist ständig und sofort aktiv, wenn wir etwas erleben: Wenn wir jemanden kennenlernen, erkennen wir sie oder ihn auch nach Stunden oder Tagen wieder. Und auch wer zum ersten Mal die Parfümabteilung, das Personalbüro oder die Toilette in einem fremden Gebäude aufsucht, findet den Ausgang gewöhnlich ohne Schwierigkeiten wieder.

Das Gedächtnis „denkt“ also nicht nur ständig „mit“, es bildet neue Erinnerungen auch besonders schnell, meist schon bei der ersten Interaktion. Das liegt daran, dass für jede Person, für jeden Ort und wohl auch für viele andere Konzepte bestimmte Gedächtniszellen direkt zuständig sind. Ein Typ dieser Neuronen, die Körnerzellen, sitzt im Hippocampus, einer zentralen Hirnregion.

Wenn Gedächtniskonzepte wie „mein Wohnzimmer“ oder „Angela Merkel“ aktiviert werden – zum Beispiel durch das Betreten des Wohnzimmers oder das Betrachten einer Fotografie der Bundeskanzlerin – reagiert eine kleine Anzahl zuständiger Körnerzellen mit elektrischen Impulsen. Die weit überwiegende Mehrzahl der Körnerzellen bleibt dagegen untätig.

Bisher war unklar, durch welchen Mechanismus einzelne Gedächtniszellen einer bestimmten Erinnerung zugewiesen werden – zumal die allermeisten Körnerzellen normalerweise ruhen und keine Funktion zu haben scheinen. Das Tübinger Forscherteam unter Leitung von Dr. Andrea Burgalossi ging nun der Frage nach, ob ruhende Körnerzellen unter bestimmten Umständen „aufgeweckt“ werden können.

Ihre Vermutung: Körnerzellen können durch elektrische Impulse zu aktiven Gedächtniszellen werden. Um die Hypothese zu überprüfen, legten sie haarfeine Mikroelektroden in den Gyrus dentatus – einen Bereich im Hippocampus, der das Ortsgedächtnis enthält – von Ratten, durch die sie schwache elektrische Impulse in einzelne Körnerzellen senden konnten.

Die Ratten liefen frei durch ein einfaches Labyrinth. An einem bestimmten Ort innerhalb des Labyrinths wurden einzelne Körnerzellen per Mikroelektrode mit schwachen elektrischen Impulsen (im Nanoamperebereich) angeregt. Mithilfe derselben Elektrode maßen die Forscher anschließend die Aktivität der behandelten Körnerzellen.

Das Ergebnis: Kamen die Ratten erneut an den Ort im Labyrinth, wo der Impuls zuvor verabreicht worden war, feuerten die stimulierten Körnerzellen nun von sich aus. Der Impuls hatte den Gyrus dentatus angeregt, in den betroffenen Körnerzellen eine Erinnerung an den Ort zu bilden.

Burgalossi und seine Forschergruppe fanden zudem heraus, dass Dauer und Art der verabreichten Impulse eine große Rolle spielen. Sie führten zu einer stabileren Ortserinnerung, wenn sie in Übereinstimmung mit der natürlichen Thetaschwingung des Gehirns erfolgten, einem Auf- und Abbau elektrischen Potenzials, der etwa vier- bis zwölfmal in der Sekunde stattfindet.

Ebenso bedeutsam könnte ein anderer Befund sein: Ratten, die den Impuls beim ersten Betreten des Labyrinths erhielten, reagierten deutlich stärker auf die induzierte Ortserinnerung als Ratten, die sich im Labyrinth vorher bereits auskannten. Offenbar werden Gedächtniszellen leichter aktiviert, wenn das Gehirn neue Informationen verarbeiten muss.

Die neuen Einsichten in die Gedächtnisbildung erhellen eine der wichtigsten Hirnfunktionen. Zwar ist noch viel zu tun, bevor so grundlegende Erkenntnisse wie die nun vorliegenden zur Entwicklung von Behandlungsmethoden für Gedächtnisstörungen (etwa bei Alzheimer, Parkinson oder Demenz) beitragen können – aber sie sind ein unverzichtbarer erster Schritt auf dem Weg dorthin.

Publikation:
Maria Diamantaki, Markus Frey, Patricia Preston-Ferrer, Andrea Burgalossi: Priming Spatial Activity by Single-Cell Stimulation in the Dentate Gyrus of Freely-Moving Rats. Current Biology (im Druck). 4. Februar 2016.

Autor:
Dr. Andrea Burgalossi
Werner Reichardt Centrum für Integrative Neurowissenschaften (CIN)
andrea.burgalossi[at]cin.uni-tuebingen.de

Pressekontakt CIN:
Dr. Paul Töbelmann
Wissenschaftskommunikation
Werner Reichardt Centrum für Integrative Neurowissenschaften (CIN)
Tel.: +49 7071 29-89108
paul.toebelmann[at]cin.uni-tuebingen.de

Weitere Informationen:

http://www.cin.uni-tuebingen.de

Antje Karbe | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Zwei Städte, ein Operationstisch
17.10.2018 | Otto-von-Guericke-Universität Magdeburg

nachricht Antiblockiersystem in Arterien schützt vor Herzinfarkt
16.10.2018 | Eberhard Karls Universität Tübingen

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf dem Weg zu maßgeschneiderten Naturstoffen

Biotechnologen entschlüsseln Struktur und Funktion von Docking Domänen bei der Biosynthese von Peptid-Wirkstoffen

Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine...

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Natürlich intelligent

19.10.2018 | Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ultraleichte und belastbare HighEnd-Kunststoffe ermöglichen den energieeffizienten Verkehr

19.10.2018 | Materialwissenschaften

IMMUNOQUANT: Bessere Krebstherapien als Ziel

19.10.2018 | Biowissenschaften Chemie

Raum für Bildung: Physik völlig schwerelos

19.10.2018 | Bildung Wissenschaft

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics