Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum man sich an Unerwartetes besser erinnert

25.02.2010
Unerwartete Ereignisse aktivieren das Belohnungszentrum im Gehirn - daher speichert es solche Eindrücke besser ab.

Diese Hypothese konnten Neurowissenschaftler der Universität Bonn jetzt in einer Patientenstudie bekräftigen: Wenn die Probanden sich Bilder einprägten, die nicht zu einem bestimmten Konzept passten, war das Belohnungszentrum im Gehirn aktiver als bei den herkömmlichen Bildern. Die Studie in Zusammenarbeit mit den Universitäten Köln, Freiburg und Davis (Kalifornien) wurde heute in dem Fachmagazin "Neuron" veröffentlicht.

Ereignisse werden dann besonders gut abgespeichert, wenn das Gedächtniszentrum starke Signale aus dem Belohnungszentrum erhält - und das ist nicht nur bei tatsächlich belohnungsrelevanten, sondern auch bei unerwarteten Ereignissen offensichtlich der Fall. Das Forscherteam um Dr. Nikolai Axmacher von der Klinik für Epileptologie der Universität Bonn untersuchte bei Patienten die Aktivität von zwei Gehirnregionen: zum einen die des Nucleus accumbens, einem Teil des Belohnungszentrums, zum anderen die Aktivität des Hippocampus, dem Gedächtniszentrum. "Die Ergebnisse bestätigen, dass die beiden Gehirnregionen miteinander wechselwirken", erklärt Dr. Nikolai Axmacher, "und zwar bei unerwarteten Ereignissen besonders stark." Daher könne man sich an Unvorhergesehenes hinterher besser erinnern.

"Stellen Sie sich vor, Sie stehen morgens auf und alles passiert wie immer", erläutert Dr. Axmacher. "Sie kaufen sich einen Kaffee, fahren zur Arbeit und setzen sich an den Computer - dann ist es unwahrscheinlich, dass Sie sich später noch an viele Details erinnern." Geschehe allerdings etwas Unerwartetes - egal, ob positiv oder negativ - sehe das ganz anders aus: "Wenn Sie sich Kaffee über die Hose schütten oder einen Kaffee geschenkt bekommen, dann ist es sehr viel wahrscheinlicher, dass Sie sich später noch daran erinnern", sagt der Mediziner.

Dieser Effekt ist schon länger bekannt. Bisher war aber unklar, wie das Gehirn das bewerkstelligt. Die Hypothese: Zunächst überprüft der Hippocampus, ob das eingetroffene Ereignis mit der Erwartungshaltung übereinstimmt und gibt diese Information an den Nucleus accumbens weiter. Dort wird daraufhin der Botenstoff Dopamin ausgeschüttet, und zwar umso mehr, je stärker das Ereignis von der Erwartungshaltung abweicht. Je mehr Dopamin ausgeschüttet wird, umso wahrscheinlicher ist es, dass der Hippocampus das Ereignis ins Langzeitgedächtnis überschreibt.

Dem Gehirn bei der Arbeit zugeschaut

Das Forscherteam um Dr. Nikolai Axmacher untersuchte jetzt erstmals die beteiligten Gehirnregionen am Menschen direkt: an Patienten, die gegen Epilepsie oder schwere Depressionen behandelt wurden und denen daher Elektroden ins Gehirn eingesetzt worden waren. Acht Epilepsiepatienten mit Elektroden im Hippocampus und sechs Depressionspatienten mit Elektroden im Nucleus accumbens nahmen an der Studie teil.

Die Probanden sollten sich Bilder auf einem Computerbildschirm einprägen, und zwar Bilder mit Gesichtern auf rotem Hintergrund und Bilder mit Häusern auf grünem Hintergrund. Dabei war stets die eine Art von Bildern deutlich in der Überzahl, die andere Art von Bildern wurde viel seltener gezeigt und kam daher unerwartet für die Probanden. Waren die Gesichter auf rotem Hintergrund besonders häufig, dann konnten sich die Patienten hinterher tatsächlich etwa anderthalbmal besser an die Häuser auf grünem Hintergrund erinnern und umgekehrt.

"Wir haben während der Einprägungsphase die Aktivität in den beteiligten Gehirnregionen gemessen", erklärt Dr. Axmacher, "und dabei im Hippocampus zwei Potenziale registriert, ein frühes Signal bei 187 Millisekunden und ein spätes bei 482 Millisekunden." Beide Signale waren deutlich stärker, wenn sich die Probanden die unerwarteten Bilder einprägten - in diesem Fall war also der Hippocampus aktiver. Im Nucleus accumbens fanden die Forscher ein spätes Potenzial bei 475 Millisekunden, auch hier war das Signal bei unerwarteten Bildern höher als bei der konventionellen Art von Bildern.

Hypothese bestätigt

"Diese Ergebnisse unterstützen die Hypothese perfekt", sagt Dr. Axmacher. "Das Gedächtniszentrum vergleicht die tatsächliche Situation mit der erwarteten - das ist das frühe Signal im Hippocampus." Das Gedächtniszentrum aktiviert durch sein Potenzial den Nucleus accumbens als Teil des Belohnungszentrums. Vermutlich schüttet dieses daraufhin Dopamin aus, und dieser Botenstoff aktiviert dann wieder das Gedächtniszentrum. Das späte Signal im Hippocampus ist dann die Reaktion auf die Antwort aus dem Nucleus accumbens.

Neue Ereignisse sind also für das Gehirn positiv, sie aktivieren das Belohnungssystem. Daher konnten sich die Probanden an die Häuser hinterher besser erinnern, wenn die Gesichter in der Überzahl waren.

Die Studie ist am 25. Februar in dem Fachmagazin "Neuron" erschienen:

N. Axmacher, M.X. Cohen, J. Fell, S. Haupt, M. Dümpelmann, C.E. Elger, T.E. Schlaepfer, D. Lenartz, V. Sturm, C. Ranganath, Intracranial EEG correlates of expectancy and memory formation in the human hippocampus and nucleus accumbens, Neuron, 2010.

Kontakt:
Dr. Nikolai Axmacher
Klinik für Epileptologie der Universität Bonn
Telefon: 0228/287-19341
E-Mail: nikolai.axmacher@ukb.uni-bonn.de

Dr. Andreas Archut | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht MHH-Forscher entdeckt: Ein Muskelprotein hilft bei der Eizellteilung
14.10.2019 | Medizinische Hochschule Hannover

nachricht Forscher entschlüsseln Wirkung von Ebola-Impfstoff - Virologen der Uniklinik Köln identifizieren neue Antikörper
08.10.2019 | Uniklinik Köln

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Insekten teilen den gleichen Signalweg zur dreidimensionalen Entwicklung ihres Körpers

18.10.2019 | Biowissenschaften Chemie

Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp

18.10.2019 | Physik Astronomie

Innovative Datenanalyse von Fraunhofer Austria

18.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics