Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Licht gegen Hirntumorzellen | Experimentelles LED-Implantat zur möglichen Therapie von Glioblastomen

10.05.2019

Sie kehren immer wieder zurück und gelten daher als unheilbar: Glioblastome. Das von einem Team um Neurochirurg Professor Dr. Marc-Eric Halatsch (Universitätsklinikum Ulm) und Medizintechnikingenieur Professor Dr. Felix Capanni (Technische Hochschule Ulm) selbst entwickelte LED-Implantat, das mittels direkt im Hirn ausgesendeten Lichts die aggressiven Hirntumorzellen eliminieren soll, hat in vitro hohe Wirksamkeit sowie in ersten Untersuchungen in vivo eine sehr gute Verträglichkeit gezeigt. Die Ergebnisse werden im Rahmen der Mitte Mai in Würzburg stattfindenden 70. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie vorgetragen.

„Trotz operativer Entfernung, Bestrahlung und Chemotherapie treten Glioblastome meist innerhalb weniger Monate erneut auf“, erläutert Professor Dr. Marc-Eric Halatsch, Leitender Oberarzt der Klinik für Neurochirurgie am Standort Ulm.


Prof. Dr. med. Marc-Eric Halatsch forscht seit über 20 Jahren an Möglichkeiten, die Behandlung der aggressiven Glioblastome zu verbessern.

Foto: Universitätsklinikum Ulm


Ein Forschungsschwerpunkt von Prof. Dr. rer. hum. biol. Felix Capanni sind intelligente Implantate.

Foto: Thomas Kaercher

„Denn für ein Nachwachsen des aggressiven Hirntumors reichen einzelne Zellen aus, die der Tumor in das ihn umgebende Hirngewebe gestreut hat. Diese können wir jedoch – um so viel gesundes Hirngewebe wie möglich zu erhalten – häufig nicht operativ zusammen mit dem eigentlichen Tumor entfernen“, so der Glioblastom-Experte weiter.

Ihrem Ziel, diese Zellen möglichst selektiv abzutöten, ist die Arbeitsgruppe um Prof. Halatsch und Prof. Capanni nun einen großen Schritt nähergekommen: Ihr selbst entwickeltes Implantat mit Licht emittierenden Dioden (kurz: LED), das elektromagnetische Strahlung unterschiedlicher Wellenlängen einschließlich UV-Licht aussenden kann, zeigt zum einen bei in-vitro-Versuchen („in der Petrischale“) ausgeprägte wachstumshemmende bis letale Effekte auf Glioblastomzellen.

Zum anderen konnte in einem ersten in-vivo-Experiment mit Hausschweinen eine sehr gute Verträglichkeit des aktivierten Implantats nachgewiesen werden.

Hinter dem innovativen Ansatz steckt eine Methode, die beispielsweise bei Hauttumoren zum Einsatz kommt: die photodynamische Therapie. Zunächst werden hierfür die bösartigen Tumorzellen mithilfe einer chemischen Substanz (Photosensibilisator) selektiv lichtempfindlich gemacht und dann mit Licht geeigneter Wellenlänge bestrahlt, bis sie im Idealfall absterben (phototoxischer Effekt).

Das in Ulm entwickelte, von einem Mikroprozessor gesteuerte LED-Implantat soll direkt im Gehirn an der Stelle platziert werden, an der durch die operative Entfernung des Glioblastoms die so genannte Resektionshöhle entstanden ist.

Da Glioblastome meist innerhalb eines Saums von zwei Zentimetern um die Resektionshöhle herum erneut auftreten, sollen insbesondere die in diesem Bereich vorhandenen Tumorzellen durch die wiederholte Bestrahlung erreicht und zerstört werden. Die Eindringtiefe der verwendeten Strahlung in das Gewebe ist dabei Gegenstand aktueller Untersuchungen.

Die bisher erhaltenen Hinweise auf die in-vitro-Effektivität und in-vivo-Verträglichkeit der Methode bestärken die Wissenschaftler darin, ihren Ansatz, in das normale Hirngewebe eingewanderte Glioblastomzellen mithilfe einer über das Implantat potenziell vielfach wiederholbaren photodynamischen Therapie zu inaktivieren oder abzutöten, im Hinblick auf eine mögliche zukünftige Anwendung bei Patient*innen mit resezierten Glioblastomen weiter zu entwickeln. Dazu müssen zusätzliche Tests erfolgen.

Über das LED-Implantat

Das „Mikrocontroller-basierte LED-Implantat für die postoperative intrazerebrale photodynamische Therapie von Glioblastomzellen“, so sein offizieller Name, soll nach der operativen Entfernung des Glioblastoms direkt im Gehirn platziert und mit dem Mikroprozessor und einer Stromquelle in Form einer wieder aufladbaren Batterie, die mit dem Verbindungskabel in den Körper implantiert wird, verbunden werden.

Das Implantat selbst besteht aus einem Glaskörper, in welchen LED integriert sind. Die LED sind in der Lage, Licht mit den Wellenlängen 405 und 635 nm sowie UV-Licht zu emittieren. Je größer die Wellenlänge, desto tiefer kann das Licht in Hirngewebe eindringen. Der Glaskörper kann den Dimensionen der durch die Entfernung des Glioblastoms entstandenen Resektionshöhle angepasst werden.

Zur technischen Umsetzung der gemeinsam mit Dr. Richard Kast (Burlington, Vermont, U.S.A.) entwickelten Implantatidee hat sich Prof. Halatsch im Jahr 2012 die Unterstützung des Medizintechnikingenieurs Prof. Felix Capanni (Prodekan der Fakultät Mechatronik und Medizintechnik, Technische Hochschule Ulm) geholt.

Für ihr Projekt hatten die Wissenschaftler 2015 eine Förderung in Höhe von 151.800 Euro im Rahmen der Ausschreibung „Innovative Projekte/Kooperationsprojekte“ des Ministeriums für Wissenschaft, Forschung und Kunst Baden-Württemberg erhalten.

Marieke Ehlen | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uniklinik-ulm.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neue Prüfmethode für die Trinkwassertechnik
21.02.2020 | Technische Hochschule Mittelhessen

nachricht Zwei Fliegen mit einer Klappe: Entzündung gehemmt, Knochenheilung gefördert
20.02.2020 | Friedrich-Alexander-Universität Erlangen-Nürnberg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Globale Datenbank für Karstquellenabflüsse

21.02.2020 | Geowissenschaften

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungsnachrichten

Langlebige Fachwerkbrücken aus Stahl einfacher bemessen

21.02.2020 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics