Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laborausrüstung muss nicht teuer sein

19.07.2017

Marke Eigenbau: Tübinger Neurowissenschaftler entwickeln kostengünstige Laborelemente

Tübinger Neurowissenschaftler haben ein kostengünstiges Laborsystem für den Selbstbau entwickelt. In der Neurowissenschaft ist die Laborausrüstung oft der größte Kostenfaktor ‒ dabei liefern auch Experimente mit selbstgebauten Setups aus dem 3D-Drucker und mit selbst programmierter Elektronik gute Resultate.


Das Gerüst des FlyPi-Systems lässt sich im 3D-Drucker herstellen und selbst montieren, Elektronik und motorisierte Teile mithilfe von Open-Source-Software selbst programmieren.

Foto: Tom Baden / CIN

Das von André Maia Chagas und Tom Baden entwickelte „FlyPi“-System ist für alltägliche Laborarbeiten wie Licht- und Fluoreszenzmikroskopie, Optogenetik, Thermogenetik und Verhaltensstudien an Kleintieren (Würmer, Fruchtfliegen, Fischlarven) geeignet.

Als modulare, preiswerte Lösung ist es in der Forschung, aber auch für Ausbildung und Unterricht einsetzbar. Die Arbeit der Forscher wurde im Fachmagazin PLoS Biology veröffentlicht. Bau- und Bedienungsanleitungen stehen kostenfrei auf Open-Source-Plattformen zur Verfügung

In der modernen Neurowissenschaft liefern kleine Tiere große Erkenntnisse über Funktionen des Nervensystems. Die durchsichtigen Larven von Zebrafischen, die Fruchtfliege Drosophila, oder der Rundwurm Caenorhabditis elegans können leicht in großer Zahl gehalten werden. Vor allem aber wurde ihr Genom vollständig sequenziert, was genetische Modifikationen ermöglicht, etwa für die Optogenetik: Bei dieser Methode werden Nervenzellen genetisch programmiert, auf Licht zu reagieren.

Mit Lichtimpulsen können dann Hirnareale oder einzelne Nervenzellen „an-“ und „ausgeschaltet“ werden – im lebenden Organismus. So können Zellen, die bestimmte Körperfunktionen und Verhalten steuern, genau identifiziert werden. Die aufwändige Einrichtung für solche Experimente umfasst unter anderem Lichtquellen definierter Wellenlänge und regelbarer Intensität, leistungsstarke Kameras und Mikroskope und eine maßgeschneiderte „Arena“ zur Verhaltensbeobachtung: Ein Labor kann leicht zehn- oder hunderttausende Euro für den Erwerb kommerzieller Lösungen ausgeben. Spitzenwissenschaft und die zugehörige Ausbildung bleiben so auf gut ausgestattete Institute in reichen Ländern beschränkt.

In einer gemeinsamen Initiative haben deshalb Neurowissenschaftler des Tübinger Werner Reichardt Centrums für Integrative Neurowissenschaften (CIN) und des Forschungsinstituts für Augenheilkunde sowie der University of Sussex in Brighton den „FlyPi“ vorgestellt. Dessen Design beruht auf einem 3D-gedruckten Rahmen, in dem Computer und eine Kamera der Marke Raspberry Pi sowie günstige LEDs zur Beleuchtung und einfache Linsen verbaut sind.

Dazu kommen optische und thermische Kontrollelemente, die auf Arduino basieren, einer Open-Source-Plattform für elektronische Prototypen. Zusammen kosten die Bauteile weniger als 100 Euro. Das Basissystem kann mit weiteren Komponenten ausgestattet werden, die den Preis gerade einmal verdoppeln.

Zwar sind kommerzielle Produkte in mancher Hinsicht höher entwickelt, Fluoreszenzmikroskopie mit FlyPi etwa liefert Auflösungen im Mikrometer-Bereich, während Spitzen-Konfokal- oder 2-Photonen-Mikroskope Zehntelmikrometer erreichen. Jedoch kosten solche zehnmal höher auflösenden Geräte auch bis zum 5.000-fachen eines FlyPi, das viele Standardaufgaben im Labor sehr gut erfüllen kann und sich überdies für Lehrzwecke eignet. Durch seinen modularen Aufbau können einzelne Komponenten auch durch hochwertigere Teile ersetzt werden, um beispielsweise die Auflösung zu verbessern.

Die Entwickler André Maia Chagas and Tom Baden setzen sich stark für die Verbreitung sogenannter „Open Labware“ ein: So nennt die wachsende Gemeinde, die sich für Open Source, Eigenkreationen und Tüftelei begeistert, solche Projekte. Seit Jahren geben sie – gemeinsam mit Lucia Prieto Godino von der Universität Lausanne – Kurse in 3D-Druck, Programmierung und Laborgeräte-Bau an Universitäten in Kenia, Uganda, Ghana, Nigeria, Südafrika, Sudan und Tansania. „Diese Institutionen haben wenig Geld für teure Laborausstattung“, sagt Baden. „Wir finden es sehr wichtig, dass Studium und neurowissenschaftliche Forschung auch in diesen Schwellenländern für eine größere Zahl von Studierenden und Wissenschaftlern möglich werden. Daher hoffen wir, dass wir dafür mit Open Labware wie unserem FlyPi einen Ansatzpunkt liefern können.“

Publikation:
André Maia Chagas, Lucia Prieto Godino, Aristides B. Arrenberg, Tom Baden: The 100 Euro Lab: A 3-D Printable Open Source Platform for Fluorescence Microscopy, Optogenetics and Accurate Temperature Control during Behaviour of Zebrafish, Drosophila and C. Elegans. PLoS Biology (im Druck). 18. Juli 2017.

Autoren:
André Maia Chagas
Werner Reichardt Centrum für Integrative Neurowissenschaften (CIN), Universität Tübingen
andre.chagas@klinikum.uni-tuebingen.de

Tom Baden
Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton UK
Werner Reichardt Centrum für Integrative Neurowissenschaften (CIN), Universität Tübingen
Forschungsinstitut für Augenheilkunde, Tübingen
t.baden@sussex.ac.uk
http://www.badenlab.org

Links:
Open Labware (betrieben von T. Baden): www.Open-Labware.net
Open Neuroscience (betrieben von A. M. Chagas): www.Openeuroscience.com
TReND in Africa www.TReNDinAfrica.org
PLoS Open Hardware Collection (kuratiert von A. M. Chagas and T. Baden): http://collections.plos.org/open-source-toolkit-hardware

Antje Karbe | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Kokosöl verlängert Leben bei peroxisomalen Störungen
20.06.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Überdosis Calcium
19.06.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics