Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Künstliches Herzbeutel-Gewebe aus dem 3D-Drucker

04.02.2020

Neuartige Polymere sollen es künftig ermöglichen, künstlichen elastischen Gewebeersatz für Perikard, Herzklappen oder Blutgefäße individuell anzufertigen. In dem Projekt PolyKARD werden biomimetische Polymere entwickelt, die mechanische Eigenschaften des Herzbeutel-Gewebes nachahmen können. Mittels 3D-Druck und Elektrospinning sollen daraus maßgeschneiderte Implantate hergestellt werden. Zusätzlich soll erstmalig ein 3D-Drucker entwickelt werden, der Medizinprodukte der Klasse III herstellen kann.

Die PolyKARD-Partner – AdjuCor GmbH, das Fraunhofer-Institut für Angewandte Polymerforschung IAP, das NMI Naturwissenschaftliches und Medizinisches Institut, die Young Optics Europe GmbH und die pro3dure medical GmbH ̶ wollen die Herstellung der Implantate bis zu ersten klinischen Studien, voraussichtlich in 2022, vorantreiben.


Als erste Anwendung des Perikard-Ersatzmaterials soll eine neuartige Oberfläche für ein extravaskuläres Herzunterstützungssystem mittels 3D-Druck hergestellt werden.

© AdjuCor GmbH

Herzleiden gehören zu einer der häufigsten Todesursachen. Weltweit leiden rund 23 Millionen Menschen an Herzschwäche ̶ Tendenz steigend. Dem gegenüber stagniert die Zahl der Herztransplantationen bei ca. 3000 Transplantationen pro Jahr weltweit.

Künstlich hergestellte Implantate könnten vielen Betroffenen helfen, die auf ein Spenderorgan warten. Der 3D-Druck von passgenauen Implantaten ist in der Medizin nicht mehr wegzudenken, etwa in der Orthopädie oder der Zahnchirurgie.

Bei Implantaten, die elastisches Gewebe ersetzen sollen, ist der Forschungsbedarf jedoch deutlich größer, denn die Anforderungen an die Materialien sind hoch: sie müssen ihre mechanischen Eigenschaften über viele Jahre hinweg erhalten, hundertprozentig beständig und biokompatibel sein und dürfen keine Abstoßungsreaktionen des Immunsystems hervorrufen. Letzteres ist vor allem bei Materialien wichtig, die permanent mit dem Körper in Kontakt sind.

Neue Polymere für moderne Drucktechnologien und individuelle Medizintechnik

Im Rahmen des Projektes PolyKARD werden biomimetische Polymere entwickelt, die die biologischen und mechanischen Materialeigenschaften des Herzbeutels, auch Perikard genannt, nachahmen sollen. Das Perikard ist eine kollagenhaltige und mechanisch enorm stabile Struktur, die das Herz umgibt.

Klinisch wird das Perikard von Rindern oder Schweinen bereits als Ersatz für menschliche Herzklappen oder zur Rekonstruktion von Blutgefäßen verwendet. Doch die Aufarbeitung des tierischen Gewebes ist teuer und gewährleistet mechanisch keine Langzeitstabilität. Problematisch sind zudem die unzuverlässige Qualität aufgrund der großen Variabilität zwischen den Spendertieren sowie ethische und religiöse Aspekte.

»In dem Projekt entwickeln wir biomimetische Perikard-Ersatzmaterialien, die beispielsweise für künstliche Herzbeutel, Herzklappen, Blutgefäße, Stents, Sehnen oder Septumverschlüsse eingesetzt werden können. Das Besondere daran ist, dass die Implantate aus Photopolymeren bestehen und individuell im 3D-Drucker oder mittels Elektrospinning hergestellt werden können.

Die Monomere werden dafür als Tinten, bzw. Harze entwickelt. Sie polymerisieren erst, wenn sie mit UV-Licht bestrahlt werden«, erklärt Dr. Wolfdietrich Meyer, der das Projekt am Fraunhofer IAP in Potsdam leitet. Das Forscherteam am Fraunhofer IAP synthetisiert dafür ein photovernetzbares Material, das aus unterschiedlichen Polyurethansegmenten sowie Kollagenanteilen besteht.

Elastisch, biokompatibel und beständig

Die neu synthetisierten Polymere werden am NMI in Reutlingen nach DIN EN ISO 10993-5 auf in vitro-Zytotoxizität untersucht. Bei der Verarbeitung der Polymere kommen einerseits verschiedene, 3D-Druck-Fertigungsverfahren zum Einsatz, andererseits wird das sogenannte Elektrospinning eingesetzt.

Am NMI entstehen mit Hilfe dieses Spinnverfahrens poröse Strukturen, die mit dem körpereigenen Gewebe des Patienten verwachsen können. Die hergestellten Trägersubstrate werden hinsichtlich ihrer mechanischen und biologischen Eigenschaften charakterisiert. Ein besonderer Fokus wird hierbei auf die Nachbildung der mechanischen Eigenschaften des Perikards sowie auf das Anwachsverhalten von Zellen gelegt.

Als erste Anwendung des biomimetischen Polymers soll eine neuartige Oberfläche für ein extravaskuläres Herzunterstützungssystem gedruckt werden. Das System der Münchner AdjuCor GmbH basiert auf einem patientenspezifischen, mechanischen Implantat, welches vollständig außerhalb des Blutstroms (extravaskulär) in der Perikardhöhle um die epikardiale Oberfläche beider Herzkammern positioniert wird.

»Ein biomimetisches Perikard-Ersatzmaterial würde nur geringe Immunreaktionen verursachen und würde somit zu einer schonenden Heilungsphase führen. Hierdurch können Intensiv- und Krankenhausaufenthalte weiter verkürzt werden«, erklärt Herzchirurg und CEO von AdjuCor Prof. Stephen Wildhirt.

Auf dem Weg zur Marktreife

Um künftig auf dem Markt für klinische Anwendungen zugelassen zu werden, müssen sowohl die neuen Photopolymere als auch die Verarbeitungsverfahren umfangreiche Auflagen erfüllen. Für die großtechnische Herstellung der Photopolymere müssen die GMP-Richtlinien (englisch Good Manufacturing Practice, kurz GMP) eingehalten werden. Sie sichern die Qualität der Produktionsabläufe und -umgebung.

Die Firma pro3dure medical GmbH Iserlohn wird den Upscaling-Prozess der Photopolymere sowie die Harzsynthese unter Berücksichtigung dieser GMP etablieren.

Die Young Optics Europe GmbH in Jena verarbeitet mit den von ihnen entwickelten 3D-Druckern bisher biokompatible Photopolymere für Produkte der Medizinklassen I – IIa. Im Rahmen des Projekts PolyKARD soll erstmals ein 3D-Drucksystem zur Herstellung von Medizinprodukten der Klasse III etabliert werden, welches zudem eine vollständige Rückverfolgbarkeit der für die Herstellung eingesetzten Rohmaterialien ermöglicht.

Mit ganzheitlicher Chemie zu neuen Materialien

Das dreijährige Projekt PolyKARD startete im April 2019 und wird vom VDI Verein Deutscher Ingenieure e.V. als Projektträger, im Auftrag des BMBF im Rahmen der Fördermaßnahme »Materialinnovationen für gesundes Leben: ProMatLeben – Polymere« unterstützt (FKZ: 13XP5087D). Am 4. Februar 2020 treffen sich die Partner erneut, um erste Meilensteine vorzustellen. »Wir konnten bereits erste elastische Photourethanharze aus nicht toxischen Ausgangsmaterialien erfolgreich synthetisieren und drucken«, erklärt Wolfdietrich Meyer.

»In Zukunft möchten wir das medizinische Konzept der Ganzheitlichkeit noch stärker bei unserer Chemie verwirklichen. Wir wollen mehr Materialien auf Basis nachwachsender Rohstoffe für den 3D-Druck und das Elektrospinning entwickeln, die biokompatibel sind und sich in höchster Präzision verarbeiten lassen. Auch den Lebenszyklus des Bauteils und gegebenenfalls eine umweltverträgliche Entsorgung behalten wir dabei im Blick«, so Meyer.

Weitere Informationen:

https://www.iap.fraunhofer.de/de/Pressemitteilungen/2020/kuenstliches-herzbeutel...

Dr. Sandra Mehlhase | Fraunhofer-Institut für Angewandte Polymerforschung IAP

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Mobile Teststationen für Kliniken und systemrelevante Unternehmen an drei Modellstandorten in Niedersachsen
30.03.2020 | Niedersächsisches Ministerium für Wissenschaft und Kultur

nachricht Zu viel Salz hemmt die Immunabwehr
26.03.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hannoveraner Physiker entwickelt neue Photonenquelle für abhörsichere Kommunikation

Ein internationales Team unter Beteiligung von Prof. Dr. Michael Kues vom Exzellenzcluster PhoenixD der Leibniz Universität Hannover hat eine neue Methode zur Erzeugung quantenverschränkter Photonen in einem zuvor nicht zugänglichen Spektralbereich des Lichts entwickelt. Die Entdeckung kann die Verschlüsselung von satellitengestützter Kommunikation künftig viel sicherer machen.

Ein 15-köpfiges Forscherteam aus Großbritannien, Deutschland und Japan hat eine neue Methode zur Erzeugung und zum Nachweis quantenverstärkter Photonen bei...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Nachwuchswissenschaftler der Universität Rostock erfinden einen Trichter für Lichtteilchen

Physiker der Arbeitsgruppe von Professor Alexander Szameit an der Universität Rostock ist es in Zusammenarbeit mit Kollegen von der Universität Würzburg gelungen, einen „Trichter für Licht“ zu entwickeln, der bisher nicht geahnte Möglichkeiten zur Entwicklung von hypersensiblen Sensoren und neuen Technologien in der Informations- und Kommunikationstechnologie eröffnet. Die Forschungsergebnisse wurden jüngst im renommierten Fachblatt Science veröffentlicht.

Der Rostocker Physikprofessor Alexander Szameit befasst sich seit seinem Studium mit den quantenoptischen Eigenschaften von Licht und seiner Wechselwirkung mit...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Künstliche Intelligenz findet das optimale Werkstoffrezept

Die möglichen Eigenschaften nanostrukturierter Schichten sind zahllos – wie aber ohne langes Experimentieren die optimale finden? Ein Team der Materialforschung der Ruhr-Universität Bochum (RUB) hat eine Abkürzung ausprobiert: Mit einem Machine-Learning-Algorithmus konnten die Forscher die strukturellen Eigenschaften einer solchen Schicht zuverlässig vorhersagen. Sie berichten in der neuen Fachzeitschrift „Communications Materials“ vom 26. März 2020.

Porös oder dicht, Säulen oder Fasern

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

“4th Hybrid Materials and Structures 2020” findet web-basiert statt

26.03.2020 | Veranstaltungen

Wichtigste internationale Konferenz zu Learning Analytics findet statt – komplett online

23.03.2020 | Veranstaltungen

UN World Water Day 22 March: Water and climate change - How cities and their inhabitants can counter the consequences

17.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Hannoveraner Physiker entwickelt neue Photonenquelle für abhörsichere Kommunikation

30.03.2020 | Physik Astronomie

Brillen-Flora: das Miniversum vor der Nase

30.03.2020 | Biowissenschaften Chemie

Neue Materialien: Strahlendes Weiß ohne Pigmente

30.03.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics