Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hochauflösendes Mikroskop in Greifswald löst Rätsel um Bewegung von Podozyten

11.05.2017

Wissenschaftler der Universität Greifswald sind in den zellulären Mikrokosmos der Nieren eingedrungen. Sie konnten dabei nachweisen, dass die für die Blutfiltration notwendigen Füßchenzellen der Niere, die sogenannten Podozyten nicht, wie oft angenommen, wandern. Die bislang ungeklärte Frage konnte mit Hilfe eines speziellen hochauflösenden Mikroskops beantwortet werden, mit dem dreidimensionale Langzeitaufnahmen in lebenden Organismen gemacht werden können.

Eine Publikation zu diesem Thema des Medizindoktoranden Florian Siegerist unter Leitung von Prof. Dr. Nicole Endlich aus dem Institut für Anatomie und Zellbiologie der Universität Greifswald wurde jetzt von der Anatomischen Gesellschaft als Veröffentlichung des Monats ausgezeichnet.


Podozyten (blau), die Füßchenzellen der Niere, sitzen auf der Kapillare und wandern nicht auf ihr entlang.

Foto: Florian Siegerist

Der Podozyt ist ein hochspezialisierter Zelltyp in den kleinen Filtereinheiten der Niere und spielt eine Schlüsselrolle bei der Entstehung von zahlreichen Nierenerkrankungen. Diese Zelle sitzt den Kapillaren auf und bildet durch ihre reißverschlussartig ineinandergreifenden Füßchen einen langen und schmalen Schlitz (nur 30 Nanometer) aus, durch den das Blut filtriert wird.

Eine Schädigung oder ein Verlust dieser hoch spezialisierten Zellen führt zu chronischen Nierenerkrankungen, die dann in einem kompletten Versagen der Niere enden können. Durch den Verlust dieser nicht mehr teilungsfähigen Podozyten verliert die Niere dauerhaft ihre Filtrationseigenschaften, und viele Eiweiße, die über den Urin ausgeschieden werden, gehen somit dem Körper verloren.

Schätzungen zufolge leiden weltweit zehn Prozent der Menschen an chronischen Nierenerkrankungen, Tendenz weiter steigend. Wie die Greifswalder SHIP-Studie (Study of Health in Pomerania) http://www2.medizin.uni-greifswald.de/cm/fv/ship.html unlängst zeigen konnte, leiden in Vorpommern sogar 17 Prozent der Menschen an Nierenerkrankungen.

Da es für diese Krankheit bisher in den meisten Fällen keine Heilungsmöglichkeit gibt, führt ein Fortschreiten der Erkrankung bei vielen Patienten schließlich zum vollständigen Funktionsverlust der Niere. Die regelmäßige Dialyse oder eine Nierentransplantation sind dann die einzige Möglichkeit zu überleben.

Hoffnung auf eine Behandlung ruhte lange Zeit auf einem bestimmten Zelltyp in der Fitrationseinheit der Niere. So ging man davon aus, dass sich dieser Zelltyp in Podozyten umwandeln kann. Um nun verloren gegangene Podozyten ersetzen zu können, müssten die Podozyten eine Voraussetzung erfüllen; sie müssten auf den Kapillaren entlang wandern können, um die freien Bereiche der verloren gegangenen Podozyten wieder auszufüllen. Einige internationale Wissenschaftler waren in der Vergangenheit der Meinung, dass Podozyten sehr mobil sind und besonders in der erkrankten Niere entlang der Kapillaren wandern.

Bisher konnte diese Frage aufgrund fehlender Mikroskopietechniken zur Langzeitbeobachtung lebender Zellen in der Maus als Modellorganismus nicht geklärt werden. In der aktuellen Arbeit konnte nun mit Hilfe eines speziellen Mikroskops, dem sogenannten 2-Photonenmikroskop, das Verhalten einzelner Podozyten der Zebrafischlarve, die zuvor gentechnisch mit einem Fluoreszenzfarbstoff markiert worden sind, untersucht werden. Die Anschaffung dieses besonderen Mikroskops wurde durch EU-Mittel finanziert.

Obwohl die Zebrafischlarve eine stark vereinfachte Niere besitzt, ist sie dennoch sehr gut mit der von Maus und Mensch vergleichbar. Die Arbeitsgruppe von Prof. Dr. Nicole Endlich und Prof. Dr. Karlhans Endlich haben dies bereits in der Vergangenheit in verschiedenen Publikationen darstellen können.

Im Rahmen eines vom BMBF geförderten Projektes STOP-FSGS http://www.research4rare.de/forschungsverbuende/stop-fsgs/ und eines Domagk-Stipendiums http://www2.medizin.uni-greifswald.de/?id=631 der Universitätsmedizin Greifswald http://www2.medizin.uni-greifswald.de/ konnten Frau Professor Endlich und Herr Florian Siegerist mit mikroskopischen Techniken wie der konfokalen Laser-Scanning-Mikroskopie, der Elektronen- und 2-Photonenmikroskopie zeigen, dass Podozyten in geschädigten Nieren zwar ihre typische Gestalt und auch ihre Funktion verlieren, aber dennoch nicht zu wandernden Zellen werden.

Um dies zu zeigen, wurden durch ein spezifisches, gentechnisches Verfahren einige Podozyten von den Kapillaren losgelöst und die verbliebenen Podozyten über einen Zeitraum von 24 Stunden mikroskopiert. Wie die Forscher beobachteten, gab es keine signifikante Änderung der Positionen der Podozyten, sodass man nicht davon ausgehen kann, dass Podozyten entlang von Kapillaren wandern, selbst wenn ein Nierenschaden vorliegt.

Mit Hilfe des hier etablierten Schadensmodells in der Zebrafischlarve, der Beobachtungsmöglichkeit von Podozyten im lebenden Organismus durch die Verwendung der 2-Photonemikroskopie und dem Wissen, dass der Schaden in Zebrafischlarven dem im Menschen sehr ähnlich ist, soll nun untersucht werden, welche Substanzen einen Nierenschaden verhindern oder abmildern können, um dies dann für eine Therapie an Patienten weiterzuentwickeln.

Weitere Informationen
Veröffentlichung des Monats http://anatomische-gesellschaft.de/index.php?id=paper-of-the-month-2017-03 auf der Internetseite der Anatomischen Gesellschaft http://anatomische-gesellschaft.de/

Podozyten (blau), die Füßchenzellen der Niere, sitzen auf der Kapillare und wandern nicht auf ihr entlang. Foto: Florian Siegerist
Das Foto kann für redaktionelle Zwecke im Zusammenhang mit dieser Pressemitteilung kostenlos her-untergeladen und genutzt werden. Dabei ist der Name des Bildautors zu nennen. Download http://www.uni-greifswald.de/universitaet/information/aktuelles/medienfotos/medienfotos-mai-2017/

Ansprechpartnerin an der Universitätsmedizin Greifswald
Prof. Dr. Nicole Endlich
Institut für Anatomie und Zellbiologie
Friedrich-Loeffler-Straße 23 C
17489 Greifswald
Telefon +49 3834 86 5303
nicole.endlich@uni-greifswald.de
http://www.medizin.uni-greifswald.de/anatomie

Jan Meßerschmidt | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Fettsäuremangel an Serotoninrezeptoren kann Depressionen auslösen
11.09.2019 | Medizinische Hochschule Hannover

nachricht Mit Simulationen gegen den Knochenschwund
11.09.2019 | Technische Hochschule Nürnberg Georg Simon Ohm

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Meilensteine auf dem Weg zur Atomkern-Uhr

Zwei Forschungsteams gelang es gleichzeitig, den lang gesuchten Kern-Übergang von Thorium zu messen, der extrem präzise Atomkern-Uhren ermöglicht. Die TU Wien ist an beiden beteiligt.

Wenn man die exakteste Uhr der Welt bauen möchte, braucht man einen Taktgeber, der sehr oft und extrem präzise tickt. In einer Atomuhr nutzt man dafür die...

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

Im Focus: Künstliche Intelligenz bringt Licht ins Dunkel

Die Vorhersage von durch Licht ausgelösten molekularen Reaktionen ist bis dato extrem rechenaufwendig. Ein Team um Philipp Marquetand von der Fakultät für Chemie der Universitäten Wien hat nun unter Nutzung von künstlichen neuronalen Netzen ein Verfahren vorgestellt, welches die Simulation von photoinduzierten Prozessen drastisch beschleunigt. Das Verfahren bietet neue Möglichkeiten, biologische Prozesse wie erste Schritte der Krebsentstehung oder Alterungsprozesse von Materie besser zu verstehen. Die Studie erschien in der aktuellen Ausgabe der Fachzeitschrift "Chemical Science" und eine zugehörige Illustration auf einem der Cover.

Maschinelles Lernen spielt in der chemischen Forschung eine immer größere Rolle, z.B. bei der Entdeckung und Entwicklung neuer Moleküle und Materialien. In...

Im Focus: Graphene sets the stage for the next generation of THz astronomy detectors

Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes. The findings were recently published in the scientific journal Nature Astronomy.

Beyond superconductors, there are few materials that can fulfill the requirements needed for making ultra-sensitive and fast terahertz (THz) detectors for...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Die Digitalisierung verändert die Medizin

13.09.2019 | Veranstaltungen

Wie verändert Autonomes Fahren unseren Alltag?

12.09.2019 | Veranstaltungen

Künstliche Intelligenz – Wie können wir Algorithmen vertrauen?

11.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Digitalisierung verändert die Medizin

13.09.2019 | Veranstaltungsnachrichten

Toxoplasmose-Erreger: Recyclingmechanismus stellt Vermehrung des Parasits Toxoplasma gondii sicher

13.09.2019 | Biowissenschaften Chemie

Hoher Wert für die Hubble-Konstante mit Hilfe von Gravitationslinsen

13.09.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics