Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Handmotorik: Neurowissenschaftler modulieren Motornetzwerk im menschlichen Gehirn

14.12.2012
Neurowissenschaftlern ist es erstmals gelungen, mittels gezielter Hirnstimulation die Verbindungen ausgewählter Areale im Gehirn, die für die Handmotorik verantwortlich sind, zu verbessern.

Die Forscher um Ulf Ziemann stimulierten den primären Motorkortex (M1), die Kommandozentrale für Bewegungsabläufe im Gehirn und das supplementär-motorische Areal (SMA).

Dieses Areal gibt den Startschuss für den Beginn einer Bewegung. Erzielt haben die Forscher dieses Resultat mit einer transkraniellen Magnetstimulation (TMS). Die gewonnenen Erkenntnisse geben den Wissenschaftlern einen tieferen Einblick in die Fähigkeit des Gehirns, gestörte Verbindungen zu reparieren.

Die Bewegungsplanung und Umsetzung erfolgt in einem komplexen System aus unterschiedlichen Hirnarealen. Sie sind als Motornetzwerke zusammengeschlossen. Der primäre Motorkortex (M1) ist für die Realisierung der Bewegung verantwortlich und nimmt Einfluss auf die Bewegungsrichtung und die Kontraktionskraft. Eine Schlüsselrolle bei der Initiierung von Handbewegungen hat das supplementär-motorische Areal (SMA). „Je komplexer selbstinitiierte Bewegungen sind, desto früher und stärker ist das supplementär-motorische Areal beteiligt“, sagt Ulf Ziemann, Vorstand Hertie-Institut für klinische Hirnforschung (HIH) und Ärztlicher Direktor, Allgemeine Neurologie, Neurologische Universitätsklinik Tübingen.

Flexibles Gehirn lernt lebenslang

Die Fähigkeit des Nervensystem zu lernen, zeigt sich auf allen Organisationsebenen des Gehirns: in der Nervenzelle, innerhalb von Nervenzellverbänden, innerhalb einzelner Hirnareale und zwischen miteinander verbundenen Hirnregionen. Das Patienten nach einer Hirnschädigung bestimmte Bewegungen wieder erlernen können, liegt an dieser sogenannten Plastizität. „Diese Fähigkeit wollen wir vor allem bei Schlaganfall-Patienten gezielt aktivieren. Sie leiden in vielen Fällen an einer leichten oder unvollständigen Lähmung einer Hand. Wir haben deshalb gezielt, vorerst am gesunden Probanden, die miteinander verbundenen Hirnregionen stimuliert, die für die Bewegung der Hand verantwortlich sind“, erläutert Ziemann die Beweggründe für die Studie.

Gezielte elektrische Impulse für das Gehirn

Die transkranielle Magnetstimulation (TMS) funktioniert nach dem physikalischen Prinzip der elektromagnetischen Induktion. Durch eine auf den Kopf aufgelegte Reizspule fließt ein kurzer Strompuls, der ein Magnetfeld um die Spule herum induziert. Dieses Magnetfeld wiederum induziert in einem weiteren Konduktor, in diesem Fall der Großhirnrinde, auch Kortex genannt, einen Stromfluss. Dieser führt zur Erregung von Nervenfasern und schließlich Nervenzellverbänden. In der aktuellen Studie verwendeten die Neurowissenschaftler eine gepaarte assoziative Stimulation, kurz PAS. Dieses nicht-invasive Hirnstimulationsprotokoll ermöglicht es, die Funktion des motorischen Systems gezielt zu beeinflussen.

„Wir wissen, aus Ergebnissen der Grundlagenforschung und aus Tierexperimenten, dass eine räumlich und zeitlich verbundene assoziative Reizung eine langfristige bidirektionale Verstärkung oder Abschwächung der synaptischen Signalübertragung zwischen Nervenzellen hervorrufen kann“, sagt Ziemann. Diesen Effekt nennen Neurowissenschaftler Spike-Timing Dependent Plasticity (STDP), oder zeitabhängige Plastizität. STDP ist ein wichtiges Modell für plastische Veränderungen in neuronalen Netzwerken und ein neuronaler Mechanismus für Lernen und adaptive Prozesse im Gehirn. Diese Erkenntnisse haben wir genutzt, um erstmals eine TMS-induzierte STDP-ähnliche Plastizität auf der Systemebene eines kortikalen Netzwerks zu induzieren, so der Experte weiter. Bei den gesunden Probanden äußerte sich dies in einer lang andauernden bidirektionalen Modulation der Signalübertragungswege zwischen M1 und SMA. Das belegt die im Journal of Neuroscience erschienene Studie. Welchen Einfluss diese Netzwerkmodulation auf die motorische Handfunktion hat, muss in weiteren Studien untersucht werden.

Neue Therapiekonzepte für Schlaganfall-Patienten

Bei vielen Schlaganfall-Patienten lässt sich durch konventionelles physiotherapeutisches Training keine ausreichende Verbesserung der Handmotorik erzielen. „Unser Ziel ist es, das Plastizitätspotential des Gehirns von Patienten nach Schlaganfall durch gezielte nicht-invasive Hirnstimulation intensiver zu nutzen. Vorstellbar wäre ein motorisches Training unter assoziativer TMS des SMA-M1 Netzwerkes“, sagt Ziemann. Ein physiologischer Schritt beim motorischen Lernen ist, so die Vermutung der Experten, die Bildung neuer motorischer Engramme. Also die Spur, die eine Reizweinwirkung, wie die transkranielle Magnetstimulation, als dauernde strukturelle Änderung im Gehirn hinterlässt. „Mit einer TMS-induzierten STDP-ähnlichen Plastizität, wie wir sie in unserer Studie bereits bei gesunden Probanden erzielt haben, könnte uns dies gelingen“, erläutert Ziemann den zugrunde liegenden Mechanismus einer möglichen neuen Therapie. Die Entwicklung innovativer neurorehabilitativer Therapiestrategien bei Patienten nach Schlaganfall ist von immenser Bedeutung: in Deutschland erleiden jährlich rund 250.000 Menschen einen Schlaganfall. Er ist die häufigste Ursache für eine anhaltende Behinderung.

Originaltitel der Publikation
Arai N, Müller-Dahlhaus F, Murakami T, Bliem B, Lu MK, Ugawa Y, Ziemann U. State-dependent and timing-dependent bidirectional associative plasticity in the human sma-m1 network. J Neurosci. 2011;31:15376-15383
Pressekontakt bei Rückfragen
Silke Jakobi
Leiterin Kommunikation
HIH Hertie-Institut für klinische Hirnforschung
Zentrum für Neurologie, Universitätsklinikum Tübingen
Otfried-Müller-Str. 27
72076 Tübingen
Tel. 07071/29-88800
Silke.Jakobi@medizin.uni-tuebingen.de
Das Hertie-Institut für klinische Hirnforschung (HIH) in Tübingen beschäftigt sich mit einem der faszinierendsten Forschungsfelder der Gegenwart: der Entschlüsselung des menschlichen Gehirns. Im Zentrum steht dabei die Frage, wie bestimmte Erkrankungen die Arbeitsweise dieses Organs beeinträchtigen. Vor diesem Hintergrund werden am HIH die informationstheoretischen und neuronalen Grundlagen wichtiger Hirnfunktionen wie Wahrnehmung, Gedächtnisleistung oder Lernverhalten untersucht. Unter anderem werden auch hirnorientierte Anwendungen für die Technik erforscht. Website: www.hih-tuebingen.de

Das 1805 gegründete Universitätsklinikum Tübingen (UKT) gehört zu den führenden Zentren der deutschen Hochschulmedizin und trägt als eines der 32 Universitätsklinika in Deutschland zum erfolgreichen Verbund von Hochleistungsmedizin, Forschung und Lehre bei. 2001 gründete es zusammen mit der Gemeinnützigen Hertie-Stiftung und der Eberhard Karls Universität das Hertie-Institut für klinische Hirnforschung (HIH), mit dem Ziel, die Ergebnisse der exzellenten neurowissenschaftlichen Forschung rasch in die klinische Praxis zur Behandlung neurologischer und neurodegenerativer Erkrankungen zu überführen. Website: www.medizin.uni-tuebingen.de

Silke Jakobi | HIH
Weitere Informationen:
http://www.hih-tuebingen.de
http://www.medizin.uni-tuebingen.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Narkolepsie: Wissenschaftler entlarven den Übeltäter der rätselhaften Schlafkrankheit
20.09.2018 | Universitätsspital Bern

nachricht Virotherapie bei Bauchfellkrebs erfolgreich getestet - Neue biologische Krebstherapie
18.09.2018 | Universitätsklinikum Tübingen

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Therapien bei Gefäßerkrankungen

Auf der Jahrestagung der Deutschen Gesellschaft für Angiologie (DGA) vom 12. bis 15. September in Münster stellten Gefäßspezialisten aus ganz Deutschland die neuesten Therapien bei Gefäßerkrankungen vor. Vor allem in den Bereichen periphere arterielle Verschlusskrankheit (pAVK) und venöse Verschlusskrankheiten wie die Tiefe Venenthrombose (TVT) gibt gute Neuigkeiten für die Patienten. Viele der 720 Gefäßspezialisten, die an der Jahrestagung teilnahmen, stellten neueste Studienergebnisse vor.

Millionen Menschen leiden in Deutschland unter Gefäßerkrankungen, allein rund fünf Millionen unter der „Schaufensterkrankheit“, medizinisch periphere...

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mit traditionellen Methoden gegen extreme Trockenheit

24.09.2018 | Geowissenschaften

Europäische Spitzenforschung auf der EuMW

24.09.2018 | Messenachrichten

Neue Therapien bei Gefäßerkrankungen

24.09.2018 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics