Fortschritt bei der Bekämpfung von fortschreitender Lähmung

Es fängt manchmal schon im Kindes- oder frühen Erwachsenenalter an, mit Unsicherheit beim Gehen und einem Schwächegefühl in den Beinen. Im Laufe der Zeit versagen die Beine noch mehr und der Patient ist auf einen Rollstuhl angewiesen.

Die erbliche Querschnittslähmung (Spastische Paraplegie) ist von ihren Ursachen her bis heute nicht therapierbar. Einen bedeutenden Schritt, dies zu ändern, hat die Nachwuchsgruppe III des Interdisziplinären Zentrums für Klinische Forschung (IZKF,)/ BMBF Forschungsgruppe Neurowissenschaften (Prof. Dr. B. Winner) mit Hilfe eines Stipendiums der Tom-Wahlig Stiftung für Hereditäre Spastische Paraplegie (HSP) nun getan.

Die HSP wird den Erkrankten in die Wiege gelegt, denn ihre Ursache ist häufig eine erbliche Veränderung bestimmter Gene. Die häufigste Form rührt von einer Mutation des SPG4 Gens her, das für die Bildung des Proteins Spastin zuständig ist. Im Zuge eines Forschungsprojektes wurde betroffenen Patienten in der Abteilung für Molekulare Neurologie des Universitätsklinikums sowie gesunden Personen eine kleine Hautbiopsie am Oberarm entnommen. Diese Hautzellen wurden in Kultur gebracht und dann in pluripotente Stammzellen umgewandelt, die sich zu jedem beliebigem Zelltyp entwickeln können.

Diese pluripotenten Stammzellen differenzierte das Forschungsteam weiter zu patienteneigenen Nervenzellen aus. Beim Vergleich von gesunden und erkrankten Nervenzellen stellten sie fest, dass bei den kranken Zellen die Fortsätze verkürzt und weniger verzweigt sind als bei den Gesunden. Zusätzlich war auch der Transport von bestimmten kleinen Organellen der Zellen, den Mitochondrien, eingeschränkt, was die Nervenzellen auf Dauer beeinträchtigt. Den an HSP erkrankten Zellen fehlt das Protein Spastin, das für die Zellteilung und die Stabilität von Nervenfortsätzen eine wichtige Rolle spielt. Die Wissenschaftler konnten die erkrankten Nervenzellen durch Einbringung einer zusätzlichen Kopie des „gesunden“ SPG4 Gens in die Zellen „heilen“.

Auch wenn dieses Vorgehen nicht unmittelbar therapeutisch genutzt werden kann, so ist es den Wissenschaftlern erstmals gelungen, die Krankheit im Labor an patienteneigenen Nervenzellen zu untersuchen. „Wir hoffen, dass durch die Etablierung solcher Krankheitsmodelle auf der Basis menschlicher Zellen neue Substanzen getestet und entdeckt werden und somit unseren Patienten geholfen werden kann“ so Prof. Dr. B. Winner, Leiterin der Nachwuchsforschungsgruppe III des IZKF.

Beteiligt am Forschungsprojekt, das von Steven Havlicek, Doktorand der Arbeitsgruppe federführend durchgeführt wurde, waren neben dem IZKF Einrichtungen des Universitätsklinikums und der Friedrich-Alexander-Universität Erlangen-Nürnberg (Prof. J. Winkler, Prof. A. Lampert, Prof. U. Schlötzer-Schrehardt), das Salk Institute for Biological Studies in La Jolla, Kalifornien.

Weitere Informationen:

Prof. Dr. Beate Winner
Telefon: 09131-85-39301
E-mail: beate.winner@med.uni-erlangen.de

Media Contact

Thomas Hoffmann idw

Weitere Informationen:

http://www.uni-erlangen.de

Alle Nachrichten aus der Kategorie: Medizin Gesundheit

Dieser Fachbereich fasst die Vielzahl der medizinischen Fachrichtungen aus dem Bereich der Humanmedizin zusammen.

Unter anderem finden Sie hier Berichte aus den Teilbereichen: Anästhesiologie, Anatomie, Chirurgie, Humangenetik, Hygiene und Umweltmedizin, Innere Medizin, Neurologie, Pharmakologie, Physiologie, Urologie oder Zahnmedizin.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer