Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eiweiße präzisieren die Krebsdiagnose

24.10.2008
Die Kenntnis von Keratinen (Struktureiweiße von Epithelzellen) hilft bei der Krebsdiagnose.

Durch das Wissen des spezifischen Vorkommens von Keratinen ist eine genauere Diagnose von epithelialen Tumoren (Karzinomen) möglich. Die Wissenschaftler um den Heidelberger Forscher Dr. rer. nat. Lutz Langbein konnten in den letzten Jahren über die Hälfte der 54 verschiedenen Keratine des Menschen charakterisieren und ihre Entstehungsorte in gesunden Epithelien bestimmen.

Dieses Wissen soll nun auf die Untersuchung von Karzinomen übertragen werden und eine genauere Erkennung (Diagnostik) und letztlich eine besser gezielte Behandlung ermöglichen.

Keratine sind die typischen Struktureiweiße (Strukturproteine) des Zellskeletts von Oberflächen bildenden Geweben, sog. Epithelgeweben. Sie bilden stabile Filamentstrukturen, welche die gesamte Zelle wie ein Netzwerk durchziehen, den Zellkern im Innersten festhalten und an den Zellrändern verankert sind (Abb. A). Die typischen Muster ihres Vorkommens kennzeichnen die verschiedenen Epitheltypen und den Reifungszustand ihrer Zellen. Da Karzinome (Tumore aus Epithelgeweben) und sogar deren Tochtergeschwülste (Metastasen) das Keratinmuster ihres Ursprungsepithels weitgehend beibehalten, kann sowohl auf den Ursprungsherd des Karzinoms, als auch auf den Reifegrad seiner Zellen geschlossen werden. Dies ist besonders bei Tumoren, denen ihr typisches Aussehen noch fehlt, wichtig.

Beim Menschen gibt es 54 verschiedene Keratine, deren Gene sich in zwei großen Gruppen auf den Chromosomen 12 und 17 befinden. Aufgrund ihres chemischen Aufbaus werden sie in Typ 1 (saure) und Typ 2 (basische), bzw. aufgrund der mechanischen Eigenschaften in die Zytokeratine ("weiche" oder epitheliale Keratine) und die Haarkeratine ("harte Keratine") unterteilt. Letztere, es gibt 17 Haarkeratine, sind unter anderem für die festen Eigenschaften von Haaren oder Nägeln verantwortlich, während die Zytokeratine das Zellskelett der anderen Epithelien wie z.B. von Haut, Drüsen oder Darm bilden. Da sich die verschiedenen Keratine eines Gewebes nicht gleichzeitig, sondern nacheinander in den verschiedenen Zellschichten gebildet werden, kann man den Entwicklungs- oder Reifezustand der epithelialen Zellen bestimmen.

Die Erkennung der Keratine im Gewebeschnitt erfolgt entweder über den Nachweis ihrer mRNA, aber mehr noch den ihrer jeweiligen Proteine. Dazu werden aus synthetisierten Proteinstücken nach Immunisierung von Tieren spezifische Antiseren erzeugt. Dies ist oft sehr schwierig, da die verschiedenen Keratine teilweise große Ähnlichkeiten in ihrer chemischen Struktur besitzen - derartige Antiseren jedoch genau nur jeweils das eine Keratin erkennen dürfen, um gezielte Aussagen machen zu können. Bei den Untersuchungen binden die Antikörper der Keratine auf Dünnschnitten von Geweben an das entsprechende Protein und können dort mittels unterschiedlicher Farbstoff-gekoppelter Detektoren unter dem Mikroskop sichtbar gemacht werden. Wichtig ist, dass diese Antikörper auch auf Gewebeschnitten von routinemäßig chemisch fixiertem und in Paraffin eingebettetem Material reagieren müssen, eine manchmal schwierige, aber unverzichtbare Voraussetzung für die Untersuchung von klinischem Material.

Es hat sich bereits in der Vergangenheit gezeigt, daß Karzinome, Tumoren aus Epithelgeweben, das charakteristische Keratinmuster ihres Ursprungsgewebes weitgehend beibehalten. Auch wenn ihr Vorkommen damit nicht auf Krebsgeschwülste beschränkt ist, können sie damit hervorragend als "Marker"- Proteine in der Tumordiagnostik dienen. Dies ist um so wichtiger, wenn ein Tumor noch nicht sein typisches Aussehen ausgebildet hat und mit herkömmlichen Methoden nur schlecht oder nicht beurteilt werden kann. Mehr noch, wenn es sich um Tochtergeschwülste eines Tumors handelt, die sich oft fernab ihres Mutter-geschwulstes angesiedelt haben. Die möglichst genaue Bestimmung des Tumors und seiner Ausprägung, aber auch die Möglichkeit der Abgrenzung von anderen manchmal ähnlich aussehenden Tumoren (Differentialdiagnose), kann vielfach für das Behandlungskonzept entscheidend sein.

Überraschenderweise leistet sich der menschliche Körper den "Luxus", einzelne Keratine, die nur in ganz bestimmten epithelialen Organen und hier wiederum nur in bestimmten Zellen vorkommen, zu bilden. So wurde dabei z.B. ein Keratin entdeckt, das nur in den Schweißdrüsen - und dort nur in der inneren Lage der zweischichtigen Ausführungsgänge dieser Drüsen - vorkommt. Erste Untersuchungen zeigen, dass dies für das Erkennen von Schweißdrüsentumoren von Bedeutung zu werden verspricht, möglicherweise insbesondere bei der Abgrenzung zu anderen Drüsentumoren. Um die diagnostische Aussagekraft und damit seine Bedeutung zu belegen, bedarf es allerdings der Untersuchung auch zahlenmäßig umfangreichen Tumormaterials.

Die bisherigen Ergebnisse belegen die Erwartung, dass die Untersuchung der Expression neuer Keratine zu einer Erweiterung und Verfeinerung der Möglichkeiten in der Tumordiagnostik führt. Ziel des geförderten Projektes ist es, die Ergebnisse der bisherigen Arbeiten aus den Normalgeweben auf die Tumordiagnostik anzuwenden. Damit soll deren Potential für die Anwendung in der Diagnostik überprüft und nachfolgend abgesichert werden. Ferner verbleiben noch 5 Keratine, deren Bildungsorte bisher noch unbekannt sind. Von diesen müssen demnach zuerst ihre "normalen" Bildungsorte, d.h. in gesunden, unveränderten Epithelien, mit biochemischen, molekularbiologischen und immunhistochemischen Methoden gefunden werden. Es ist davon auszugehen, dass auch ihr Vorkommen möglicherweise auf sehr spezielle epitheliale Strukturen, Zellgruppen (evtl. nur auf Einzelzellen) innerhalb eines Epithels beschränkt ist, denn sie wurden offenbar in der Vergangenheit "übersehen". Diese Ergebnisse dienen als Ausgangspunkt für Studien an Tumoren zu ihrer möglichen diagnostischen Bedeutung. Nach Abschluß der Arbeiten sollten routinemäßig verwendbare Antikörper und Anwendungsstrategien für die Diagnostik zur Verfügung stehen, damit durch eine verbesserte Diagnostik die Behandlung effizienter und die Heilungschancen tumorerkrankter Patienten gesteigert werden.

Kontakt:
Dr. rer. nat. Lutz Langbein, Deutsches Krebsforschungszentrum (DKFZ), Abt. Genetik der Hautkarzinogenese, A110; Im Neuenheimer Feld 280, 69120 Heidelberg; Tel.: 06221-42 3211.

Die Wilhelm Sander-Stiftung fördert dieses Forschungsprojekt mit über 120.000 €. Stiftungszweck der Stiftung ist die medizinische Forschung, insbesondere Projekte im Rahmen der Krebsbekämpfung. Seit Gründung der Stiftung wurden dabei insgesamt über 160 Mio. Euro für die Forschungsförderung in Deutschland und der Schweiz bewilligt. Die Stiftung geht aus dem Nachlass des gleichnamigen Unternehmers hervor, der 1973 verstorben ist.

Bernhard Knappe | idw
Weitere Informationen:
http://www.wilhelm-sander-stiftung.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Gangmessdaten visualisieren und analysieren
16.07.2018 | Fachhochschule St. Pölten

nachricht „Small meets smaller“ – Nanopartikel beeinflussen Schimmelpilzinfektion der Atemwege
05.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Optische Kontrolle von Herzfrequenz oder Insulinsekretion durch lichtschaltbaren Wirkstoff

17.07.2018 | Biowissenschaften Chemie

Umweltressourcen nachhaltig nutzen

17.07.2018 | Ökologie Umwelt- Naturschutz

Textilien 4.0: Smarte Kleidung und Wearables als Innovation

17.07.2018 | Innovative Produkte

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics