Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Medizinische Physik

01.03.2001


Das Herz in vier Dimensionen

Nur 30 bis 40 Sekunden Untersuchungszeit sind mit modernen

Computertomographie-Geräten nötig, um eine qualitativ hochwertige, dreidimensionale Abbildung von Herz und Herzkranzgefäßen aufzubauen. Da das Herz in allen Bewegungsphasen dargestellt wird, kommt zu den drei Raumrichtungen sogar noch eine vierte Dimension hinzu: die Zeit. Das Institut für Medizinische Physik an der Universität Erlangen-Nürnberg hat mit der 4D-Bildgebung einen Weg für frühzeitige Untersuchungen am Herzen eröffnet, der geeignet ist, die bisher übliche, für Patienten sehr belastende invasive Koronarangiographie zu ersetzen. Die Arbeitsgruppe unter der Leitung von Prof. Dr. Willi Kalender konzentriert sich unter anderem darauf, die Strahlendosis beim Einsatz der Computertomographie zu reduzieren.

Die theoretischen Grundlagen für die vierdimensionale Darstellung des Herzens, die durch den Pulsschlag kaum noch verzerrt wird und deshalb Abbildungen in zuvor ungekannter Qualität liefert, hatte das Institut für Medizinische Physik als weltweit erste Arbeitsgruppe bereits 1996 gelegt. Es wurden Rekonstruktionsalgorithmen entwickelt, Berechnungsmethoden, welche die Schichtbilder, die während der Drehung des Messapparats um den Körper entstehen, zu einer möglichst exakten räumlichen Abbildung zusammensetzen und überflüssige Daten ausblenden. Erste Patientenstudien fanden in Zusammenarbeit mit der Klinik für Innere Medizin II (Direktor: Prof. Dr. Werner G. Daniel) und dem Institut für Diagnostische Radiologie (Direktor: Prof. Dr. Werner Bautz) der Universität Erlangen-Nürnberg statt. Die American Association of Physicists in Medicine zeichnete die Veröffentlichung der Erfahrungen und Ergebnisse mit dem "Greenfield Award" für den besten Artikel in der weltweit führenden Fachzeitschrift "Medical Physics" im Jahr 1998 aus.


Todfeind Nr 1: Die Koronare Herzkrankheit

Durchblutungsstörungen bei eingeengten oder verschlossenen Herzkranzgefäßen führen dazu, dass es dem Herzmuskel an Energiezufuhr und an Sauerstoff mangelt. Die medizinische Diagnostik ist darum bemüht, die koronare Herzkrankheit - in den westlichen Industrieländern noch immer Todesursache Nr. 1 - im Anfangsstadium zu erkennen oder bereits entstandene Schäden und Risikobereiche genau abzugrenzen, um sie gezielt behandeln zu können. Eine Röntgenkontrastdarstellung der Koronararterien gilt derzeit als Standard für solche Untersuchungen. Sie ermöglicht den Blick ins Innere der Gefäße; Verengungen werden damit sichtbar.

Diese invasive Methode macht allerdings eine Anästhesie erforderlich. Ein Katheter muss eingeführt werden, der Kontrastmittel in relativ hoher Dosis bis in die Arterien bringt, und auch die Strahlendosis, die zur Durchleuchtung nötig ist, ist vergleichsweise groß. Eine nicht-invasive Alternative, die den Patienten derartige Unannehmlichkeiten und Risiken erspart, steht im Prinzip mit der sogenannten Elektronenstrahltomographie seit zehn Jahren zur Verfügung. Diese Geräte sind allerdings teuer und auf den Einsatz am Organ Herz beschränkt, so dass sie sich nicht durchsetzen konnten.
Konventionelle Computertomographen sind dagegen wesentlich vielseitiger und wurden ständig weiterentwickelt. Vor allem konnte die Rotationszeit stark gesenkt werden, und Mehrzeilendetektoren ermöglichen es, mehrere Schichten gleichzeitig zu erfassen. Das 4D-Bildungsverfahren des Erlanger Instituts für Medizinische Physik wurde noch an einem CT-Scanner mit 0,75 Sekunden Rotationszeit und Einzeilendetektor entworfen; mittlerweile wurde es in Kooperation mit Siemens Medical Systems auf aktuelle Systeme erweitert, die Rotationszeiten von 0,5 Sekunden bei gleichzeitiger Erfassung von vier Schichten aufweisen. Für die kardiale Bildgebung mit Computertomographie bedeutete dies einen Quantensprung. Vierdimensionale Darstellungen des Herzens sind nun mit den weit verbreiteten CT-Scannern möglich geworden, die durchaus das Potential besitzen, die invasiven Angiographien abzulösen.


Bis zur Hälfte der Strahlendosis kann eingespart werden

Die umfassenden diagnostischen Möglichkeiten und der unbestrittene Nutzen der Computertomographie haben dazu geführt, dass die Zahl der CT-Geräte und der CT-Untersuchungen in den letzten Jahren kontinuierlich gestiegen ist. Ein Nachteil dieser Art der Röntgendiagnostik ist jedoch, dass die Patienten, bedingt durch das Aufnahmeverfahren, einer vergleichsweise hohen Strahlendosis ausgesetzt sind. Obwohl in Deutschland nur etwa jede zwanzigste Untersuchung mit Röntgenstrahlen eine CT ist, macht ihr Anteil an der medizinischen Exposition der Bevölkerung fast 40 Prozent aus, und der Einsatz solcher Geräte wird mit Sicherheit noch steigen. Die Strahlendosis in der Computertomographie zu verringern, ist also eine wichtige Aufgabe.

Technische Maßnahmen zur Dosisreduktion könnten - neben gesetzlichen Vorgaben, wie der Einführung von Referenzdosiswerten für CT-Untersuchungen - die Strahlenbelastung niedriger halten. Ihr Ziel ist es, eine diagnostisch minimal notwendige Zahl von Röntgenquanten einzusetzen und das Signal optimal auszunutzen, die Strahlung also abzuschwächen, ohne die Bildqualität zu beeinträchtigen. Dafür bietet sich eine Vielzahl von Möglichkeiten an.

Potentiell dosisreduzierende Maßnahmen werden am Erlanger Institut für Medizinische Physik zunächst am Rechner simuliert, im erfolgversprechenden Fall dann am CT-Gerät implementiert und im Einsatz überprüft. Ein Beispiel für signifikante Dosisreduktion ohne negativen Einfluss auf die Bildqualität bietet die anatomieabhängige Röhrenstrommodulation, die ebenfalls in Kooperation mit Siemens Medical Systems durchgeführt wurde. Wie stark die Strahlung im Körper des Patienten geschwächt wird - wie groß also der Rauschbeitrag zum Bild ist - ist davon abhängig, ob die Strahlen seitlich oder von vorn nach hinten einfallen. Diese Unterschiede machen es möglich, den Röhrenstrom während einer Rotation je nach Lage zu regeln und anzupassen. Bis zu 50 Prozent der Dosis können auf diese Weise eingespart werden - für die Patienten eine erhebliche Begrenzung des Risikos.

Kontakt:
Prof. Dr. Willi A. Kalender PhD, Dr. Theobald Fuchs
Institut für Medizinische Physik
Krankenhausstraße 12, 91054 Erlangen
Tel.: 09131/85 -22310, Fax: 09131/85 -22824
E-Mail: willi.kalender@imp.uni-erlangen.de, theo@imp.uni-erlangen.de

Weitere Informationen finden Sie im WWW:

Heidi Kurth | idw

Weitere Berichte zu: Computertomographie Physik Rotationszeit

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neue Prüfmethode für die Trinkwassertechnik
21.02.2020 | Technische Hochschule Mittelhessen

nachricht Zwei Fliegen mit einer Klappe: Entzündung gehemmt, Knochenheilung gefördert
20.02.2020 | Friedrich-Alexander-Universität Erlangen-Nürnberg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Globale Datenbank für Karstquellenabflüsse

21.02.2020 | Geowissenschaften

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungsnachrichten

Langlebige Fachwerkbrücken aus Stahl einfacher bemessen

21.02.2020 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics