Bochumer Forscher machen überraschende Entdeckungen zur Plastizität des erwachsenen Gehirns

Nach einer Verletzung des Gehirns werden die umgebenden Nervenzellen vorübergehend wieder jung: Bis zu einem Jahr lang lassen sich Prozesse beobachten, die zu einer „Neuverdrahtung“ im Gehirn gehören. Das haben Dr. Dimitrios V. Giannikopoulos und Prof. Dr. Ulf T. Eysel (Neurophysiologie, Medizinische Fakultät der RUB) in einer Studie herausgefunden. Die Forscher maßen die Aktivität einzelner Nervenzellen der Sehrinde erwachsener Katzen und legen jetzt detaillierte Daten über den Zeitverlauf, das Ausmaß und die Möglichkeiten und Grenzen der Neuverdrahtung des Gehirns vor. Ihre Ergebnisse sind in der aktuellen Ausgabe der Proceedings of the National Academy of Sciences of the United States of America (PNAS) veröffentlicht.

Unklar: Wie plastisch ist das erwachsene Gehirn?

Jeder weiß, dass frühkindliche und jugendliche Gehirne sehr flexibel sind. „Sie besitzen ohne Zweifel die Fähigkeit zur leichteren Anpassung“, beschreibt Prof. Eysel. „Nach Verletzungen und bei Erkrankungen des Nervensystems ist die Kapazität für eine Rehabilitation durch eine Reorganisation dann vergleichsweise groß.“ Wie es damit im Gehirn Erwachsener steht, ist nicht so klar. Trotz vieler Ergebnisse, die die Plastizität des erwachsenen Gehirns gezeigt haben, gaben neuere Befunde mit modernen bildgebenden Methoden auch Hinweise, dass die Kapazität zur Reorganisation beim Erwachsenen sogar verschwindend gering sein könnte.

Neu-Verdrahtung breitet sich wellenförmig aus

Um die Fähigkeit zur Reorganisation des erwachsenen Gehirns exakt zu bestimmen, maßen Dr. Dimitrios Giannikopoulos und Prof. Dr. Ulf Eysel die Aktivität von einzelnen Nervenzellen der Sehrinde erwachsener Katzen. Nach umschriebenen Schädigungen der Netzhaut erfolgt innerhalb von Wochen bis zu einem Jahr eine weitreichende Umorganisation der Sehrinde. Die erblindeten Gehirnbereiche werden wieder aktiviert, die Zuordnung von Auge und Gehirn erfährt eine grundsätzliche Neuordnung. „Die Neu-Verdrahtung wandert ähnlich einer Welle langsam über Wochen vom gesunden Randbereich immer weiter in die 'erblindete' Gehirnregion“, erklärt Dr. Giannikopoulos. Die betroffenen Nervenzellen ähneln vorübergehend in einzelnen Eigenschaften den Zellen im frühen Leben nach der Geburt. Die nach der Schädigung zuerst „blinden“ Zellen werden mit ungeschädigten Netzhautbereichen neu verbunden. Dabei sind sie überaktiv, haben große Reizareale („rezeptive Felder“) und ihre Analyseleistungen sind stark vermindert.

Erstaunlich plastisch und doch begrenzt

Nach der Neuverdrahtung normalisieren sich die Zellen, erhalten wieder rezeptive Felder normaler Größe und gewinnen ihre Analyseleistungen – wenn auch z. T. abgeschwächt – zurück. Die Zahl der an der Neuverdrahtung beteiligten Zellen im geschädigten Gebiet liegt je nach Entfernung vom gesunden Randbereich zwischen zehn und fast 100 Prozent. „Die Arbeit bestätigt mit neuen Einzelheiten zum Verlauf über lange Zeit, dass die Plastizität des erwachsenen Gehirns eine erstaunliche grundsätzliche Kapazität aufweist, dass die Wiederherstellung von Funktionen jedoch in ihrer Reichweite und im Ausmaß der wiedererlangten Analyseleistungen gegebenenfalls von Strukturvoraussetzungen des Gehirns begrenzt werden“, fasst Prof. Eysel zusammen.

Später Reorganisationsschub

Neben den neuen Erkenntnissen über den Zeitverlauf und das Verhalten der Zellen während der Umverdrahtung ist die Entdeckung einer späten Komponente im Reorganisationsprozess, die erst zwischen drei Monaten und einem Jahr abläuft, für die Forscher hochinteressant. In dieser späten Phase erhöhte sich die Zahl der an der Reorganisation beteiligten Zellen tief im geschädigten Bereich noch einmal von zehn bis 20 auf 40 bis 50 Prozent. Dieser Befund unterstreicht, daß zusätzlich zu den bekannten, guten Erfolgen der Frührehabilitation eine weitere Verbesserung und Stabilisierung in späteren Phasen nach einer Schädigung des Gehirns erfolgt.

Titelaufnahme

Dimitrios V. Giannikopoulos and Ulf T. Eysel: Dynamics and specificity of cortical map reorganization following retinal lesions. In: Proceedings of the National Academy of Sciences (PNAS), 4.-7. Juli 2006, http://www.pnas.org/papbyrecent.shtml

Weitere Informationen

Prof. Dr. Ulf Eysel, Neurophysiologie, Medizinische Fakultät, Ruhr-Universität Bochum, 44780 Bochum, Tel. 0234/32-23849, E-Mail: eysel@rub.de

Media Contact

Dr. Josef König idw

Alle Nachrichten aus der Kategorie: Medizin Gesundheit

Dieser Fachbereich fasst die Vielzahl der medizinischen Fachrichtungen aus dem Bereich der Humanmedizin zusammen.

Unter anderem finden Sie hier Berichte aus den Teilbereichen: Anästhesiologie, Anatomie, Chirurgie, Humangenetik, Hygiene und Umweltmedizin, Innere Medizin, Neurologie, Pharmakologie, Physiologie, Urologie oder Zahnmedizin.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neuartiges Material für nachhaltiges Bauen

Innovativer Werkstoff für eine energieeffiziente Architektur: Forschende des Karlsruher Instituts für Technologie (KIT) stellen in der aktuellen Ausgabe der Fachzeitschrift Nature Communications ein polymerbasiertes Material mit besonderen Eigenschaften vor. Das…

Neues Antibiotikum gegen Erreger der Flussblindheit und Lymphatischen Filariose

Prof. Achim Hoerauf, Direktor des Instituts für Medizinische Mikrobiologie, Immunologie und Parasitologie des Universitätsklinikums Bonn (UKB), und seinem Team ist es in Kollaboration mit der Abteilung Pharmazeutische Technologie und Biopharmazie…

Evolutionäre Genomik: Folgen biodiverser Fortpflanzungssysteme

Die Deutsche Forschungsgemeinschaft (DFG) fördert die Einrichtung eines neuen Graduiertenkollegs (GRK) in der Biologie an der Universität Göttingen. Das GRK mit dem Titel „Evolutionary Genomics: Consequences of Biodiverse Reproductive Systems…

Partner & Förderer