Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hilfe für kaputte Gelenke

22.09.2004


Der Gelenkknorpel lässt sich als Herz eines gesunden Gelenkes verstehen. Seine Hauptaufgabe ist es, Druck und Belastung auf den Knochen aufzunehmen, abzufedern und optimal zu verteilen, um eine bestmögliche und reibungsarme Gelenkbeweglichkeit (Artikulation) zu garantieren. Der Knorpel hat dabei die Funktion eines schützenden Polsters. Schon ein einziger Sturz vom Fahrrad könnte fatale Folgen haben.

... mehr zu:
»Gen »Knorpelgewebe

Das Heilungsvermögen des Knorpels ist stark eingeschränkt, denn die Anzahl der Zellen im Knorpel, die die Möglichkeit haben, neues Gewebe aufzubauen, ist viel zu gering. Ein bestehender Defekt wird entweder nicht aufgefüllt oder die Auffüllung wird mit Ersatzgewebe vorgenommen. Dieses Ersatzgewebe ist nicht so haltbar wie der originale Knorpel. Deshalb besteht ein erhöhtes Risiko der Arthrose - ein irreversibler Gelenkschaden, der heftige Schmerzen verursacht und manche Bewegungen zur Qual werden lässt.

Dr. Henning Madry, Leiter des Labors Experimentelle Orthopädie der Universitätsklinik Homburg/Saar, ist es gemeinsam mit US-amerikanischen Forscherkollegen gelungen, verbessertes Knorpelgewebe zu züchten, welches als biologisches Ersatzgewebe bei Gelenkknorpelverletzungen transplantiert werden könnte.


Um Knorpelgewebe zu züchten, haben die Forscher dem Knorpel zunächst Zellen entnommen. Im Labor werden die Zellen dann in einem auflösbaren Biomaterial im so genannten Bioreaktor kultiviert. Dieser Behälter bietet den Zellen die idealen Bedingungen, um sich zu teilen und neues Knorpelgewebe zu bilden. Um die Entwicklung von Knorpelgewebe zu beschleunigen und zu verbessern, hatte Dr. Madry die Idee, den entnommenen Zellen noch genetisches Material einzuschleusen, den körpereigenen insulinartigen Wachstumsfaktor I (IGF-I). Durch das Gen wird das Knorpelwachstum beschleunigt und die strukturellen und biomechanischen Eigenschaften des Gewebes verbessert, dieses wird stabiler und flexibler. Die besondere Herausforderung bei der Züchtung des Knorpelgewebes besteht darin, das Gen in die Zellen einzulagern, ohne dass es abgestoßen wird. Dr. Madry hat hierzu das Gen für den Wachstumsfaktor in Liposomen einlogiert. Da Liposomen eine ähnliche Struktur wie die Zellenmembran aufweisen, werden sie von den Zellen nicht abgestoßen, sondern problemlos aufgenommen. Durch dieses Verfahren entwickelt sich Knorpelgewebe, das eine Zelldichte ähnlich der des natürlichen Gewebes erreicht. Dieses Gewebe kann theoretisch transplantiert werden, so dass der defekte Knorpel austauschbar ist und damit eine Reparatur möglich wird.

Dr. Madry, der auch als orthopädischer Chirurg an der Universitätsklinik tätig ist, arbeitet nun daran, die neue Behandlungsmethode für den praktischen Einsatz am Menschen weiterzuentwickeln. Für seine bisherigen Forschungserfolge und „die kreative Entwicklung einer technischen Innovation" zeichnete die amerikanische Weltraumbehörde NASA den Homburger Mediziner jetzt mit dem NASA Space Act Award aus.

Kontakt:
Dr. Henning Madry
Orthopädische Universitäts- und Poliklinik, Labor für Experimentelle Orthopädie,
Universitätskliniken des Saarlandes
Kirrbergerstraße
66421 Homburg
Tel.: (06841) 1624520
Fax: (06841) 1624580
E-Mail: hmad@hotmail.com

Dr. Roland Rolles | Staatskanzlei des Saarlandes
Weitere Informationen:
http://www.innovation.saarland.de

Weitere Berichte zu: Gen Knorpelgewebe

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Kokosöl verlängert Leben bei peroxisomalen Störungen
20.06.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Überdosis Calcium
19.06.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics