Hilfe für kaputte Gelenke

Der Gelenkknorpel lässt sich als Herz eines gesunden Gelenkes verstehen. Seine Hauptaufgabe ist es, Druck und Belastung auf den Knochen aufzunehmen, abzufedern und optimal zu verteilen, um eine bestmögliche und reibungsarme Gelenkbeweglichkeit (Artikulation) zu garantieren. Der Knorpel hat dabei die Funktion eines schützenden Polsters. Schon ein einziger Sturz vom Fahrrad könnte fatale Folgen haben.

Das Heilungsvermögen des Knorpels ist stark eingeschränkt, denn die Anzahl der Zellen im Knorpel, die die Möglichkeit haben, neues Gewebe aufzubauen, ist viel zu gering. Ein bestehender Defekt wird entweder nicht aufgefüllt oder die Auffüllung wird mit Ersatzgewebe vorgenommen. Dieses Ersatzgewebe ist nicht so haltbar wie der originale Knorpel. Deshalb besteht ein erhöhtes Risiko der Arthrose – ein irreversibler Gelenkschaden, der heftige Schmerzen verursacht und manche Bewegungen zur Qual werden lässt.

Dr. Henning Madry, Leiter des Labors Experimentelle Orthopädie der Universitätsklinik Homburg/Saar, ist es gemeinsam mit US-amerikanischen Forscherkollegen gelungen, verbessertes Knorpelgewebe zu züchten, welches als biologisches Ersatzgewebe bei Gelenkknorpelverletzungen transplantiert werden könnte.

Um Knorpelgewebe zu züchten, haben die Forscher dem Knorpel zunächst Zellen entnommen. Im Labor werden die Zellen dann in einem auflösbaren Biomaterial im so genannten Bioreaktor kultiviert. Dieser Behälter bietet den Zellen die idealen Bedingungen, um sich zu teilen und neues Knorpelgewebe zu bilden. Um die Entwicklung von Knorpelgewebe zu beschleunigen und zu verbessern, hatte Dr. Madry die Idee, den entnommenen Zellen noch genetisches Material einzuschleusen, den körpereigenen insulinartigen Wachstumsfaktor I (IGF-I). Durch das Gen wird das Knorpelwachstum beschleunigt und die strukturellen und biomechanischen Eigenschaften des Gewebes verbessert, dieses wird stabiler und flexibler. Die besondere Herausforderung bei der Züchtung des Knorpelgewebes besteht darin, das Gen in die Zellen einzulagern, ohne dass es abgestoßen wird. Dr. Madry hat hierzu das Gen für den Wachstumsfaktor in Liposomen einlogiert. Da Liposomen eine ähnliche Struktur wie die Zellenmembran aufweisen, werden sie von den Zellen nicht abgestoßen, sondern problemlos aufgenommen. Durch dieses Verfahren entwickelt sich Knorpelgewebe, das eine Zelldichte ähnlich der des natürlichen Gewebes erreicht. Dieses Gewebe kann theoretisch transplantiert werden, so dass der defekte Knorpel austauschbar ist und damit eine Reparatur möglich wird.

Dr. Madry, der auch als orthopädischer Chirurg an der Universitätsklinik tätig ist, arbeitet nun daran, die neue Behandlungsmethode für den praktischen Einsatz am Menschen weiterzuentwickeln. Für seine bisherigen Forschungserfolge und „die kreative Entwicklung einer technischen Innovation“ zeichnete die amerikanische Weltraumbehörde NASA den Homburger Mediziner jetzt mit dem NASA Space Act Award aus.

Kontakt:
Dr. Henning Madry
Orthopädische Universitäts- und Poliklinik, Labor für Experimentelle Orthopädie,
Universitätskliniken des Saarlandes
Kirrbergerstraße
66421 Homburg
Tel.: (06841) 1624520
Fax: (06841) 1624580
E-Mail: hmad@hotmail.com

Media Contact

Dr. Roland Rolles Staatskanzlei des Saarlandes

Weitere Informationen:

http://www.innovation.saarland.de

Alle Nachrichten aus der Kategorie: Medizin Gesundheit

Dieser Fachbereich fasst die Vielzahl der medizinischen Fachrichtungen aus dem Bereich der Humanmedizin zusammen.

Unter anderem finden Sie hier Berichte aus den Teilbereichen: Anästhesiologie, Anatomie, Chirurgie, Humangenetik, Hygiene und Umweltmedizin, Innere Medizin, Neurologie, Pharmakologie, Physiologie, Urologie oder Zahnmedizin.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Wie die Galvanotechnik durch Digitalisierung effizient wird

SurfaceTechnology GERMANY… Digitalisierung und Hartverchromung aus Chrom(III)-Elektrolyten: Das sind die beiden großen Themen, mit denen sich Forscherinnen und Forscher von der Abteilung Galvanotechnik am Fraunhofer IPA derzeit beschäftigen. Ihre Erkenntnisse…

Ersatz für Tierversuche – jetzt ganz ohne Tierleid

Erstes Gewebe-Modell der Leber völlig ohne Materialien tierischer Herkunft hergestellt. Wissenschaftler*innen der TU Berlin haben mit Hilfe von 3D-Biodruck erstmals ein Modell der Leber aus menschlichen Zellen hergestellt, ohne dabei…

Neue Wege zur mentalen Gesundheit

Magnetspule am Kopf sorgt für antidepressive Effekte… In der Klinik und Poliklinik für Psychiatrie und Psychotherapie am Universitätsklinikum Bonn (UKB) wird derzeit eine Studie zur Erforschung der antidepressiven Wirkung einer…

Partner & Förderer