Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

So kommunizieren Nervenzellen miteinander

26.06.2003


Organisatoren der Informationsübertragung zwischen Nervenzellen identifiziert



Das menschliche Gehirn ist ein Organ enormer Komplexität. Es enthält Milliarden Nervenzellen, von denen jede Zelle an durchschnittlich 1.000 Kontaktstellen mit anderen verknüpft ist. Der Informationsfluss über diese Kontaktstellen stellt die Grundlage allen normalen und krankhaften Verhaltens dar. Göttinger Forscher haben nun entdeckt, wie Nervenzellen die schnelle und exakte Informationsübertragung untereinander verändern können. Die Arbeit aus dem Bereich der biomedizinischen Grundlagenforschung trägt zum Verständnis des Zusammenhangs von Struktur und Funktion neuronaler Verknüpfungen bei und wurde jetzt in der Zeitschrift "nature" (Vol 423, pp 939-948, 26.06.2003) veröffentlicht.

... mehr zu:
»Membran »Nervenzelle »Neurexine »Synapse »Zelle


Nervenzellen - auch Neurone genannt - leiten Signale an ihren langen Fortsätzen, den Axonen, in Form von elektrischen Spannungsveränderungen weiter. An den Kontaktstellen zwischen zwei Nervenzellen ist die elektrische Weiterleitung unterbrochen. Die Membranen der vorgeschalteten und nachgeschalteten Zelle liegen dicht aneinander und ein nur sehr schmaler Spalt trennt die beiden. An diesen Strukturen - den "Synapsen" - erfolgt die Signalübertragung zwischen den Zellen.

"Jede Nervenzelle bildet eine Vielzahl synaptischer Kontakte mit ihren unterschiedlichen Partnerzellen. Damit die Informationsübertragung zwischen den Nervenzellen Sinn ergibt, müssen die Eigenschaften der synaptischen Terminale den nachgeschalteten Nervenzellen angepasst werden," sagt Dr. Markus Missler, Abt. Neuro- und Sinnesphysiologie, Bereich Humanmedizin. Dem Mechanismus dieser Regulation sind er und seine Kollegen Astrid Rohlmann und Weiqi Zhang vom Sonderforschungsbereich 406 der Universität Göttingen -Bereich Humanmedizin, in Zusammenarbeit mit Gunnar Kattenstroth und Kurt Gottmann von der Ruhr-Universität Bochum, und Thomas C. Südhof vom Howard Hughes Medical Institute in Dallas (USA) auf die Spur gekommen.

Die Wissenschaftler untersuchten Mäuse, in denen Neurexine - eine bestimmte Klasse von Zelladhäsionsmolekülen - defekt sind. Zelladhäsionsmoleküle sind Proteine in der Zellmembran, denen bisher hauptsächlich strukturelle Aufgaben zugeschrieben wurden. Neurexine werden in die synaptische Membran der vorgeschalteten Zelle eingelagert, wo sie mit anderen Proteinen wechselwirken und zudem Proteine in der Membran der nachgeschalteten Zelle erkennen können. Es wurde festgestellt, dass in Mäusen mit defekten Neurexinen die Struktur von Synapsen relativ normal, die Übertragung von Nervenimpulsen überraschenderweise jedoch massiv gestört war. Ein so deutlicher Einfluss von neuronalen Zelloberflächenmolekülen auf die Funktion der Synapse wurde hier erstmalig beobachtet, was zur Veröffentlichung der Ergebnisse in der renommierten Wissenschaftszeitschrift Nature beitrug. Aber wie beeinflussen Neurexine die Signalübertragung zwischen den Neuronen?

Es wird schon lange vermutet - konnte aber noch nie in einem Tiermodell nachgewiesen werden - dass Kalziumkanäle bei der Informationsübertragung an Synapsen eine entscheidende Rolle spielen. Die Spannungsveränderung in der präsynaptischen Membran führt nach gegenwärtiger Vorstellung zur Öffnung von Kanälen in dieser Membran, die nur für Kalziumionen durchlässig sind. Der nachfolgende Anstieg der Kalziumkonzentration löst dann einen Prozess aus, der zur Signalübertragung an die nachgeschaltete Zelle führt. Durch verschiedene Untersuchungen konnten die Wissenschaftler den Angriffspunkt der Neurexine in den Mechanismus der Signalübertragung so weit einengen, bis schließlich feststand: Neurexine sind im synaptischen Spalt lokalisiert und beeinflussen die Aktivität der Kalziumkanäle und damit letztlich die Effizienz der neuronalen Informationsübertragung.

Die Forscher sind so der Lösung des Problems nähergekommen wie die Stärke und Dynamik der Signalübertragung an der Vielzahl von Synapsen zwischen den unterschiedlichsten Nervenzellen aufeinander abgestimmt werden. Die untersuchte Klasse von Zelladhäsionsproteinen, die Neurexine, könnte den Kontakt zwischen den Nervenzellen vermitteln und die Eigenschaften der Informationsübertragung durch ihren Einfluss auf die Kalziumkanäle verändern. Hinzu kommt, dass Neurexine in einer Vielzahl leicht verschiedener Varianten auftreten, welche der Erkennung unterschiedlicher Partnerzellen dienen könnten. Sie bilden somit eine molekulare Schnittstelle, an der Neurone die Eigenschaften der neuronalen Signalübertragung auf die Struktur ihrer Verbindungen untereinander anpassen.

Die Forschungsarbeiten sind an drei Stellen durchgeführt worden: Im Rahmen des Sonderforschungsbereichs SFB 406 an der Universität Göttingen im Bereich Humanmedizin, dem Lehrstuhl Zellphysiologie der Universität Bochum and an der University of Texas Southwestern Medical Center, Dallas (USA). Dr. Markus Missler ist gegenwärtig Mitglied des DFG Forschungszentrums Molekularphysiologie des Gehirns (CMPB).

Weitere Informationen:

Georg-August-Universität Göttingen - Bereich Humanmedizin
Dr. Markus Missler
Abt. Neuro- und Sinnesphysiologie
Humboldtallee 23
37073 Göttingen
email: mmissle1@gwdg.de
Tel: + 0551 / 39-12807

Rita Wilp | idw

Weitere Berichte zu: Membran Nervenzelle Neurexine Synapse Zelle

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Gangmessdaten visualisieren und analysieren
16.07.2018 | Fachhochschule St. Pölten

nachricht „Small meets smaller“ – Nanopartikel beeinflussen Schimmelpilzinfektion der Atemwege
05.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetische Wirbel: Erstmals zwei magnetische Skyrmionenphasen in einem Material entdeckt

Erstmals entdeckte ein Forscherteam in einem Material zwei unabhängige Phasen mit magnetischen Wirbeln, sogenannten Skyrmionen. Die Physiker der Technischen Universitäten München und Dresden sowie von der Universität zu Köln können damit die Eigenschaften dieser für Grundlagenforschung und Anwendungen gleichermaßen interessanten Magnetstrukturen noch eingehender erforschen.

Strudel kennt jeder aus der Badewanne: Wenn das Wasser abgelassen wird, bilden sie sich kreisförmig um den Abfluss. Solche Wirbel sind im Allgemeinen sehr...

Im Focus: Neue Steuerung der Zellteilung entdeckt

Wenn eine Zelle sich teilt, werden sämtliche ihrer Bestandteile gleichmässig auf die Tochterzellen verteilt. UZH-Forschende haben nun ein Enzym identifiziert, das sicherstellt, dass auch Zellbestandteile ohne Membran korrekt aufgeteilt werden. Ihre Entdeckung eröffnet neue Möglichkeiten für die Behandlung von Krebs, neurodegenerative Krankheiten, Alterungsprozessen und Virusinfektionen.

Man kennt es aus der Küche: Werden Aceto balsamico und Olivenöl miteinander vermischt, trennen sich die beiden Flüssigkeiten. Runde Essigtropfen formen sich,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

Materialien für eine Nachhaltige Wasserwirtschaft – MachWas-Konferenz in Frankfurt am Main

11.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vertikales Begrünungssystem Biolit Vertical Green<sup>®</sup> auf Landesgartenschau Würzburg

16.07.2018 | Architektur Bauwesen

Feinstaub macht Bäume anfälliger gegen Trockenheit

16.07.2018 | Biowissenschaften Chemie

Wie Krebszellen Winterschlaf halten

16.07.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics