Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weltrekord: Materialforschung bei mehr als 6 Mio. Atmosphären

24.10.2012
Völlig neue Dimensionen für die Materialwissenschaften eröffnet eine neue, an der Universität Bayreuth entwickelte Forschungstechnik.

Erstmals ist es unter normalen Raumtemperaturen im Laboratorium gelungen, extrem hohe statische Drücke von mehr als 6 Mio. Atmosphären (600 Gigapascal) zu erzeugen. Werden Materialien derartigen Drücken ausgesetzt, ändern sie ihre gewohnten chemischen und physikalischen Eigenschaften und entwickeln neuartige Strukturen.


Schematische Darstellung der zweistufig aufgebauten Diamantstempelzelle (links unten): Zwischen den Flächen der beiden Diamant-Einkristalle sind zwei erheblich kleinere nanokristalline Diamanten fixiert. Zwischen diesen wird die Materialprobe komprimiert. - Die Abbildung zeigt das bei einem Druck von 6,4 Mio. Atmosphären (= 640 Gigapascal) entstandene Röntgen-Beugungsmuster einer Mischung aus Rhenium und Gold. Noch nie zuvor wurde unter Laborbedingungen ein derart hoher statischer Druck erzeugt.

Abb.: Prof. Dr. Natalia Dubrovinskaia, Universität Bayreuth; zur Veröffentlichung frei.

Im Forschungsjournal "Nature Communications" berichtet ein internationales Forschungsteam mit Prof. Dr. Natalia Dubrovinskaia und Prof. Dr. Leonid Dubrovinsky (beide Universität Bayreuth) über das bahnbrechende Verfahren.

Weitreichende Folgen für zahlreiche Wissenschaftszweige

In enger Zusammenarbeit mit Wissenschaftlern der Universität Chicago und der Universität Antwerpen konnte mit dem in Bayreuth konzipierten Verfahren ein Rekord von rund 6,4 Millionen Atmosphären (640 Gigapascal) erzielt werden. Dieser Druck ist sechs Millionen Mal so stark wie der Luftdruck auf der Erdoberfläche und eineinhalb Mal so stark wie der Druck, der im Zentrum der Erde herrscht. Bisher wurden in der Materialforschung höchstens rund 420 Gigapascal erreicht.
"Wenn wir die Eigenschaften, Strukturen und Verhaltensweisen von Materialien unter derart extremen Bedingungen erforschen können, hat das weitreichende Auswirkungen auf zahlreiche Wissenschaftszweige, insbesondere die Geowissenschaften, die Kosmologie, die Chemie und die Physik kondensierter Materie", erklärt Prof. Dr. Leonid Dubrovinsky vom Bayerischen Geoinstitut, einem Forschungszentrum der Universität Bayreuth. "Wir haben beispielsweise ganz neue Chancen, um die Entstehung der Erde zu erforschen oder um herauszufinden, wie sich Eisen unter extremen Drücken verhält." Eisen ist das Material, das im Erdkern am häufigsten vorkommt.

Superharte nanostrukturierte Diamanten

Die neue Forschungstechnik ist eine – im Ergebnis revolutionäre – Weiterentwicklung von Diamantstempelzellen (diamond anvil cells), die in der Materialforschung schon seit längerem zum Einsatz kommen. Das Prinzip dieser Apparaturen: Die Probe des zu untersuchenden Materials wird zwischen den Flächen zweier Diamanten platziert. Diese Diamanten pressen die Materialprobe aus entgegensetzten Richtungen zusammen. Sind die Drücke, die von beiden Seiten auf die Probe einwirken, hoch genug, kann das Material seine inneren Strukturen grundlegend ändern.
In diesen herkömmlichen Diamantstempelzellen lassen sich mit relativ hohem technischen Aufwand Drücke bis zu ca. 250 Gigapascal generieren. Doch mit einer kleinen, aber entscheidenden Modifikation haben die Bayreuther Wissenschaftler diesen Wert um rund 150 Prozent steigern können. Sie verwenden dafür Diamant-Einkristalle mit jeweils ca. 0,25 Karat. Diese Diamanten kommen jetzt aber nicht mehr direkt mit der Materialprobe in Berührung. Vielmehr wird auf jeder der einander gegenüberliegenden Diamantflächen ein halbkugelförmiger nanokristalliner Diamant befestigt, der einen Durchmesser von 20 bis 50 Mikrometern – also von 0,02 bis 0,05 Millimetern – hat. Die winzigen runden Köpfe dieser Diamanten liegen präzise einander gegenüber. Zwischen ihnen wird nun die Materialprobe platziert.

Die Pointe dieser Konstruktion liegt darin, dass die Diamantstempelzelle einen zweistufigen Aufbau erhält. Der Druck, der von den gegenüberliegenden Einkristallen ausgeht, konzentriert sich jetzt in den winzigen „Köpfen“ der beiden halbkugelförmigen Diamanten. Weshalb können diese der enormen Drucksteigerung standhalten? Der Grund liegt in ihrem inneren Aufbau. Die Diamanten werden deshalb als nanokristallin bezeichnet, weil sie sich aus winzigen Nanopartikeln zusammensetzen. Physikalisch gesprochen: Sie besitzen eine Korngröße von weniger als 50 Nanometern. Im Vergleich mit den Diamant-Einkristallen, auf denen sie befestigt werden, verfügen sie deshalb über eine viel höhere Druckfestigkeit. Denn je geringer die Korngröße eines Diamants ist, desto robuster verhält er sich unter extremen Drücken und Temperaturen.

Auf dem Weg zu neuen Höchstdruck-Rekorden

"Nanokristalline Diamanten könnten sich für die materialwissenschaftliche Hochdruckforschung als Material der Zukunft erweisen", erklärt Prof. Dr. Natalia Dubrovinskaia, Heisenberg-Professorin für Materialphysik und Technologie bei extremen Bedingungen an der Universität Bayreuth. Diese Diamanten lassen sich aus glasigem Carbon mithilfe einer neuen Hochdruck-Synthesetechnik herstellen, und zwar auf relativ kostengünstige Weise.

Die neue Forschungstechnik wurde in Kooperation mit der Universität Chicago erprobt, genauer: mit der Advanced Photon Source des Argonne National Laboratory (ANL). Hier haben die Bayreuther Wissenschaftler gemeinsam mit U.S.-amerikanischen Kollegen Experimente auf der Basis von Synchrotronstrahlung durchgeführt, einer äußerst intensiven Lichtstrahlung, die durch eine Beamline ausgerichtet und gefiltert wird. Mit einer hochleistungsfähigen Röntgen-Beugungstechnik haben sie winzige Materialproben untersucht, die eine Dicke von weniger als 0,001 Millimetern hatten. Das ANL zählt zu den größten Forschungsinstituten des Energieministeriums der Vereinigten Staaten.

Am Ende des in "Nature Communications" veröffentlichten Beitrags zeigt sich das internationale Forschungsteam zuversichtlich, dass sich die in der Materialforschung eingesetzten Drücke mithilfe des neuen Verfahrens erheblich steigern lassen. Drücke von 1 Terapascal – also von 10 Millionen Atmosphären – sind aus der Sicht der Autoren kein unrealistisches Ziel.

Veröffentlichung:

Dubrovinsky, L. et al.
Implementation of micro-ball nanodiamond anvils
for high-pressure studies above 6 Mbar.
Nat. Commun. 3:1163
doi 10.1038/ncomms2160 (2012)

Ansprechpartner:

Prof. Dr. Natalia Dubrovinskaia
Labor für Kristallographie
Universität Bayreuth
D-95440 Bayreuth
Telefon: +49 (0)921-55 3880 oder 3881
E-Mail: Natalia.Dubrovinskaia@uni-bayreuth.de

Prof. Dr. Leonid Dubrovinsky
Bayerisches Geoinstitut (BGI)
Universität Bayreuth
D-95440 Bayreuth
Telefon: +49 (0)921-55 3736 oder 3707
E-Mail: Leonid.Dubrovinsky@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Miniatur-Doppelverglasung: Wärmeisolierendes und gleichzeitig wärmeleitendes Material entwickelt
17.01.2020 | Max-Planck-Institut für Polymerforschung

nachricht 3D-Druck: Neue Hightech-Anlage für Bremer Materialwissenschaften
16.01.2020 | Universität Bremen

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Miniatur-Doppelverglasung: Wärmeisolierendes und gleichzeitig wärmeleitendes Material entwickelt

Styropor oder Kupfer – beide Materialien weisen stark unterschiedliche Eigenschaften auf, was ihre Fähigkeit betrifft, Wärme zu leiten. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz und der Universität Bayreuth haben nun gemeinsam ein neuartiges, extrem dünnes und transparentes Material entwickelt und charakterisiert, welches richtungsabhängig unterschiedliche Wärmeleiteigenschaften aufweist. Während es in einer Richtung extrem gut Wärme leiten kann, zeigt es in der anderen Richtung gute Wärmeisolation.

Wärmeisolation und Wärmeleitung spielen in unserem Alltag eine entscheidende Rolle – angefangen von Computerprozessoren, bei denen es wichtig ist, Wärme...

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF errichtet ein Applikationslabor für Quantensensorik

Um den Transfer von Forschungsentwicklungen aus dem Bereich der Quantensensorik in industrielle Anwendungen voranzubringen, entsteht am Fraunhofer IAF ein Applikationslabor. Damit sollen interessierte Unternehmen und insbesondere regionale KMU sowie Start-ups die Möglichkeit erhalten, das Innovationspotenzial von Quantensensoren für ihre spezifischen Anforderungen zu evaluieren. Sowohl das Land Baden-Württemberg als auch die Fraunhofer-Gesellschaft fördern das auf vier Jahre angelegte Vorhaben mit jeweils einer Million Euro.

Das Applikationslabor wird im Rahmen des Fraunhofer-Leitprojekts »QMag«, kurz für Quantenmagnetometrie, errichtet. In dem Projekt entwickeln Forschende von...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: Wie Zellen ihr Skelett bilden

Wissenschaftler erforschen die Entstehung sogenannter Mikrotubuli

Zellen benötigen für viele wichtige Prozesse wie Zellteilung und zelluläre Transportvorgänge strukturgebende Filamente, sogenannte Mikrotubuli.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

11. Tagung Kraftwerk Batterie - Advanced Battery Power Conference am 24-25. März 2020 in Münster/Germany

16.01.2020 | Veranstaltungen

Leben auf dem Mars: Woher kommt das Methan?

16.01.2020 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2020

16.01.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Chemiker lassen Bor-Atome wandern

17.01.2020 | Biowissenschaften Chemie

Infektiöse Proteine bei Alzheimer

17.01.2020 | Biowissenschaften Chemie

Miniatur-Doppelverglasung: Wärmeisolierendes und gleichzeitig wärmeleitendes Material entwickelt

17.01.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics