Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stahl im 3-D-Kino: Neue Analysetechnik gibt die Strukturen von Stahl exakt räumlich wieder

19.03.2014

In Brücken, Windrädern und Autos wird viel Stahl verbaut, rund 5.000 Stahlsorten sind auf dem Markt. Doch worin unterscheiden sie sich?

Saarbrücker Materialforscher haben jetzt eine äußerst exakte Analysetechnik entwickelt, die im passenden Maßstab die inneren Strukturen von Stahl abbildet. Das Ergebnis ist ein räumliches Computermodell, in dem sich die Wissenschaftler im Bereich von wenigen Mikrometern bewegen können.


Die 3-D-Grafik zeigt, wie die 2. Phase des Dualphasenstahls eine eigene, plattenähnliche Struktur gebildet hat. Deren räumliche Vernetzung kann man in Walzrichtung durch den Stahl genau verfolgen. Universität des Saarlandes


Die Saarbrücker Materialforscher setzen verschiedene Analysetechniken ein, von der 3-D-Atomsondentomographie bis hin zur neuen Serienschnittechnik, für die Fehleranalyse auch die Röntgentomographie. Universität des Saarlandes

Es macht sichtbar, wie das innere Gefüge von Stahl durch den Produktionsprozess verändert wird. Die klassische zweidimensionale Lichtmikroskopie sagte bisher wenig darüber aus, warum Stahl etwa durch den Walzprozess andere Eigenschaften erhält.

Johannes Webel, der Materialwissenschaft und Werkstofftechnik an der Universität des Saarlandes studiert, hat jetzt für die neue 3-D-Analysetechnik auf Basis der Lichtmikroskopie den zweiten Preis des Dörrenberg Studien Award erhalten. Das ist die bundesweit wichtigste Auszeichnung für Bachelorarbeiten zum Thema Stahl.

Für die 3-D-Analyse von Werkstoffen setzen die Saarbrücker Materialwissen-schaftler um Professor Frank Mücklich verschiedene Technologien ein, die für Stahl jedoch nur bedingt geeignet sind.

Im sogenannten Focused-Ion-Beam-Mikroskop werden durch Serienschnitte winzige Bestandteile von Materialien untersucht „Für Stahlproben, die in der Regel als Würfel mit einer Kantenlänge von einem Zentimeter vorliegen, ist diese Analysetechnik jedoch zu feinmaschig. Man würde Wochen benötigen, um inhomogene Strukturen, die etwas grober sind als ein menschliches Haar, auszuwerten und sichtbar zu machen“, erklärt Johannes Webel.

Die Röntgentomographie hingegen, die jeder aus der Medizin kennt, wird in der Materialforschung für Motorblöcke und andere größere Bauteile verwendet. Damit werden vor allem lokale Störungen wie Poren und Risse untersucht. Bei den nur zentimeter¬großen Stahlproben erhält man damit jedoch keine Aufnahmen der komplexen inneren Struktur des Werkstoffs.

„Die Herausforderung war nun, ein bildgebendes Verfahren zu finden, das im Bereich von mindestens einem Tausendstel Millimeter funktioniert und zugleich den Einsatz der Lichtmikroskopie für ein Volumen erlaubt, das auch eine repräsentative Größe hat. Die Analysetechnik sollte außerdem zuverlässig zu handhaben sein und schnell Ergebnisse liefern, zum Beispiel für die Qualitätssicherung während der Stahlproduktion“, sagt Webel.

Der junge Materialforscher konzentrierte sich auf die Lichtmikroskopie, weil diese bisher schon in den Entwicklungsabteilungen der Stahlindustrie eingesetzt wird, aber dort bei klassischer Anwendung nur zweidimensionale Bilder liefert. Die Abbildungstechnik hat außerdem den Nachteil, dass man sie nur bedingt vergleichen und exakt reproduzieren kann. Die Stahloberfläche muss nämlich zuerst mit einer ätzenden Flüssigkeit behandelt werden, damit die Oberfläche, die nach dem Polieren spiegelt, überhaupt Strukturen zeigt.

„Bei diesem Ätzvorgang können kleine Temperaturunterschiede und leichte Abweichungen in der Zusammensetzung der ätzenden Substanz die Mikroskop-Bilder schon völlig verändern. Es kommt auch sehr auf das Geschick des Laboranten an, welche Strukturen im Stahl nachher sichtbar werden“, erläutert der Saarbrücker Student. Er konstruierte deshalb eine eigene Apparatur, bei der nun in einem Durchgang die Stahlprobe exakt geschnitten, poliert, geätzt und mikroskopiert wird.

„Von dem Stahlwürfel werden dort identische Scheiben von einigen Zehntausendstel Millimetern abgetragen. Nach jedem Abtrag wird die Scheibe automatisiert zur Seite geklappt, mit der Ätzung behandelt und abgelichtet. Dann folgt der nächste hauchdünne Abtrag“, beschreibt Johannes Webel das von ihm entwickelte Verfahren. Anschließend werden die Aufnahmen aus dem Lichtmikroskop im Computer zu einem dreidimensionalen Modell zusammengefügt. „Dieses Modell kann man sich wie einen Schweizer Käse vorstellen. Die Käsemasse selbst ist die eine Kristallstruktur, die Löcher bilden eine weitere. Durch verschiedene Farben können wir nun sichtbar machen, wie die beiden Strukturen jeweils räumlich miteinander vernetzt sind“, erklärt Dominik Britz, wissenschaftlicher Mitarbeiter von Professor Mücklich und Betreuer der Forschungsarbeit.

Materialwissenschaftler bezeichneten diese inneren Strukturen von Werkstoffen als Gefüge. Darin grenzten so genannte Körner oder Kristallite einzelne Bereiche ab, die eine bestimmte Kristallstruktur aufweisen, sich aber in ihrer Ausrichtung von den benachbarten Körnern unterscheiden. „Das überraschende Ergebnis war, dass der von uns untersuchte Dualphasenstahl kein homogenes Gemisch der Körner ergeben hat, wie die bisherigen Schliffproben vermuten ließen. Stattdessen hatte die zweite Phase eine eigene, plattenähnliche Struktur gebildet, die in Walzrichtung durch den Stahl miteinander vernetzt ist“, erläutert Britz.

Diese räumliche Vernetzung ließ sich mit den herkömmlichen Aufnahmen aus Lichtmikroskopen nicht darstellen, weil man aus den zweidimensionalen Aufnahmen nicht auf das 3-D-Modell schließen konnte. „Das lässt sich am Beispiel von Schweizer Käse anschaulich erklären. Wenn man in einer Käsescheibe ein rundes Loch sieht, weiß man nicht, ob dieses im Käsestück nur ein kugelförmiger Hohlraum war oder ob sich ein kompliziertes räumliches Netzwerk durch den ganzen Käse erstreckte“, erläutert Webel.

Ähnlich komplex und zerklüftet seien die beiden Strukturen in einem Dualphasenstahl miteinander verwoben. Dies habe erstmals die neue 3-D-Analysetechnik sichtbar gemacht. Der junge Forscher will diese nun weiter entwickeln, damit sie in den Forschungsabteilungen der Stahlindustrie und bei der Qualitätssicherung zum Einsatz kommen kann. Dafür nutzt er die umfangreiche Labortechnik an der Universität des Saarlandes und dem Steinbeis-Forschungszentrum für Werkstofftechnik, das von Professor Frank Mücklich geleitet wird.

Pressefotos, Abbildungen und Video des 3-D-Modells unter:
www.uni-saarland.de/pressefotos

Fragen beantwortet:

Prof. Dr. Frank Mücklich
Lehrstuhl für Funktionswerkstoffe der Universität des Saarlandes
Steinbeis-Forschungszentrum Material Engineering Center Saarland (MECS)
Tel. 0681/302-70500
Mail: muecke@matsci.uni-sb.de

Hinweis für Hörfunk-Journalisten: Sie können Telefoninterviews in Studioqualität mit Wissenschaftlern der Universität des Saarlandes führen, über Rundfunk-Codec (IP-Verbindung mit Direktanwahl oder über ARD-Sternpunkt 106813020001). Interviewwünsche bitte an die Pressestelle (0681/302-3610).

Weitere Informationen:

http://www.uni-saarland.de/fuwe
http://www.mec-s.de
http://www.materialwissenschaft.uni-saarland.de
http://www.doerrenberg.de/studienaward.html
http://www.uni-saarland.de/pressefotos

Friederike Meyer zu Tittingdorf | Universität des Saarlandes

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Das leichteste elektromagnetische Abschirmmaterial der Welt
02.07.2020 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Neue Chemie für ultradünne Gassensoren
01.07.2020 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein neuer Weg zur superschnellen Bewegung von Flussschläuchen in Supraleitern entdeckt

Ein internationales Team von Wissenschaftern aus Österreich, Deutschland und der Ukraine hat ein neues supraleitendes System gefunden, in dem sich magnetische Flussquanten mit Geschwindigkeiten von 10-15 km/s bewegen können. Dies erschließt Untersuchungen der reichen Physik nichtlinearer kollektiver Systeme und macht einen Nb-C-Supraleiter zu einem idealen Materialkandidaten für Einzelphotonen-Detektoren. Die Ergebnisse sind in Nature Communications veröffentlicht.

Supraleitung ist ein physikalisches Phänomen, das bei niedrigen Temperaturen in vielen Materialien auftritt und das sich durch einen verschwindenden...

Im Focus: Elektronen auf der Überholspur

Solarzellen auf Basis von Perowskitverbindungen könnten bald die Stromgewinnung aus Sonnenlicht noch effizienter und günstiger machen. Bereits heute übersteigt die Labor-Effizienz dieser Perowskit-Solarzellen die der bekannten Silizium-Solarzellen. Ein internationales Team um Stefan Weber vom Max-Planck-Institut für Polymerforschung (MPI-P) in Mainz hat mikroskopische Strukturen in Perowskit-Kristallen gefunden, die den Ladungstransport in der Solarzelle lenken können. Eine geschickte Ausrichtung dieser „Elektronen-Autobahnen“ könnte Perowskit-Solarzellen noch leistungsfähiger machen.

Solarzellen wandeln das Licht der Sonne in elektrischen Strom um. Dabei wird die Energie des Lichts von den Elektronen des Materials im Inneren der Zelle...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: Das leichteste elektromagnetische Abschirmmaterial der Welt

Empa-Forschern ist es gelungen, Aerogele für die Mikroelektronik nutzbar zu machen: Aerogele auf Basis von Zellulose-Nanofasern können elektromagnetische Strahlung in weiten Frequenzbereichen wirksam abschirmen – und sind bezüglich Gewicht konkurrenzlos.

Elektromotoren und elektronische Geräte erzeugen elektromagnetische Felder, die bisweilen abgeschirmt werden müssen, um benachbarte Elektronikbauteile oder die...

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz QuApps zeigt Status Quo der Quantentechnologie

02.07.2020 | Veranstaltungen

Virtuelles Meeting mit dem BMBF: Medizintechnik trifft IT auf der DMEA sparks 2020

17.06.2020 | Veranstaltungen

Digital auf allen Kanälen: Lernplattformen, Learning Design, Künstliche Intelligenz in der betrieblichen Weiterbildung, Chatbots im B2B

17.06.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der sechste Sinn der Tiere: Ein Frühwarnsystem für Erdbeben?

03.07.2020 | Biowissenschaften Chemie

Effizient, günstig und ästhetisch: 
Forscherteam baut Elektroden aus Laubblättern

03.07.2020 | Energie und Elektrotechnik

Ein neuer Weg zur superschnellen Bewegung von Flussschläuchen in Supraleitern entdeckt

03.07.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics