Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Plättchen statt Kügelchen machen Bildschirme sparsam

20.01.2020

ETH-Wissenschaftler haben die QLED-Technologie für Bildschirme weiterentwickelt. Sie stellten Lichtquellen her, die zum ersten Mal Licht in hoher Intensität in nur eine Richtung ausstrahlen. Dies verringert Streuverluste, was die Technologie äusserst energieeffizient macht.

Seit wenigen Jahren gibt es QLED-Bildschirme zu kaufen. Sie sind bekannt für ihre hellen, intensiven Farben, welche mit der sogenannten Quantenpunkt-Technologie erzeugt werden. QLED steht für Quantenpunkt-Leuchtdiode.


Eine mit mehreren Lagen extrem dünner Halbleiter-Nanoplättchen beschichtete Glasscheibe, die mit UV-Licht beschienen wird und blaues Licht aussendet.

ETH Zürich / Jakub Jagielski

Forschende der ETH Zürich haben nun eine Technologie entwickelt, welche die Energieeffizienz der QLEDs erhöht. Die Wissenschaftler erreichten dies, indem sie die Streuverluste des Lichts im Innern der Dioden minimierten. Damit tritt ein grösserer Anteil des erzeugten Lichts nach aussen.

Konventionelle QLEDs bestehen aus einer Vielzahl von kugelförmigen Halbleiter-Nanokristallen, die auch Quantenpunkte genannt werden. In einem Bildschirm werden diese Nanokristalle von hinten mit UV-Licht angeregt.

Die Kristalle wandeln dieses in farbiges Licht im sichtbaren Bereich um. Je nach Materialzusammensetzung des Nanokristalls entsteht eine andere Farbe.

Allerdings streuen diese kugelförmigen Nanokristalle das erzeugte Licht im Innern des Bildschirms auf alle Seiten. Nur rund ein Fünftel des erzeugten Lichts tritt aus und ist für den Betrachter sichtbar.

Um die Energieeffizienz der Technologie zu erhöhen, versuchen Wissenschaftler seit Jahren, Nanokristalle zu entwickeln, die Licht nur in eine Richtung (nach vorne, zum Betrachter hin) abgeben.

Die ersten solchen Lichtquellen existieren auch bereits. Sie bestehen nicht aus kugelförmigen Kristallen, sondern aus ultradünnen Nanoplättchen. Diese emittierten Licht nur in eine Richtung – rechtwinklig zur Plättchenebene.

Werden diese Nanoplättchen nebeneinander in einer Schicht angeordnet, erzeugen sie ein verhältnismässig schwaches Licht, das für Bildschirme nicht ausreicht.

Um die Lichtintensität zu erhöhen, verfolgen Wissenschaftler den Ansatz, mehrere Schichten solcher Plättchen übereinander zu legen. Dabei beginnen die Plättchen jedoch miteinander zu wechselwirken, und das Licht wird wiederum nicht nur in eine Richtung, sondern auf alle Seiten ausgesandt.

Gestapelt und voneinander isoliert

Die Forschenden unter der Leitung von Chih-Jen Shih, Professor für technische Chemie an der ETH Zürich, haben nun extrem (2,4 Nanometer) dünne Halbleiterplättchen so gestapelt, dass sie durch eine noch dünnere (0,65 Nanometer) Isolierschicht aus organischen Molekülen voneinander getrennt sind.

Diese Schicht unterbindet quantenphysikalische Wechselwirkungen, wodurch die Plättchen auch in gestapelter Anordnung Licht überwiegend in nur eine Richtung emittieren.

«Je mehr Plättchen wir übereinanderstapeln, desto intensiver wird dabei das Licht. Wir können so die Lichtintensität beeinflussen, ohne dabei die bevorzugte Emissionsrichtung zu verlieren», sagt Jakub Jagielski, Doktorand in Shihs Gruppe und Erstautor der in der Zeitschrift Nature Communications [http://dx.doi.org/10.1038/s41467-019-14084-3] veröffentlichen Fachpublikation. Die Wissenschaftler haben damit zum ersten Mal ein Material hergestellt, das Licht in hoher Intensität in nur eine Richtung emittiert.

Sehr energieeffizientes blaues Licht

Die Forschenden konnten damit Lichtquellen für blaues, grünes, gelbes und oranges Licht herstellen. Die für Bildschirme ebenfalls nötige rote Farbkomponente lässt sich laut den Wissenschaftlern derzeit noch nicht mit der neuen Technologie realisieren.

Für das neu geschaffene blaue Licht gilt: Statt einem Fünftel des erzeugten Lichts wie bei der herkömmlichen QLED-Technologie erreichen nun rund zwei Fünftel davon das Auge des Betrachters.

«Das heisst, um Licht mit einer bestimmten Intensität zu erzeugen, benötigen wir mit unserer Technologie im Vergleich zur herkömmlichen QLED-Technologie nur halb so viel Energie», sagt ETH-Professor Shih. Bei anderen Farben ist der Effizienzgewinn derzeit allerdings noch kleiner. Die Wissenschaftler versuchen daher in weiterer Forschungsarbeit, diesen auch dort zu erhöhen.

Im Vergleich zu herkömmlichen LEDs hat die neue Technologie einen weiteren Vorteil, wie die Wissenschaftler betonen: Die neuartigen gestapelten QLEDs sind sehr einfach in einem einzigen Schritt herzustellen.

Bei herkömmlichen LEDs ist es ebenfalls möglich, die Intensität zu erhöhen, indem mehrere lichtemittierende Schichten übereinander angeordnet werden. Deren Herstellung erfolgt allerdings Schicht für Sicht und ist entsprechend aufwendiger.

Originalpublikation:

Jagielski J, Solari SF, Jordan L, Scullion D, Blülle B, Li YT, Krumeich F, Chiu YC, Ruhstaller B, Santos EJG, Shih CJ: Scalable photonic sources using two-dimensional lead halide perovskite superlattices. Nature Communications 2020, doi: 10.1038/s41467-019-14084-3 [http://dx.doi.org/10.1038/s41467-019-14084-3]

Weitere Informationen:

https://ethz.ch/de/news-und-veranstaltungen/eth-news/news/2020/01/qled-plaettche...

Hochschulkommunikation | Eidgenössische Technische Hochschule Zürich (ETH Zürich)
Weitere Informationen:
http://www.ethz.ch

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Ein wichtiger Schritt zum Neuromorphen Rechnen: richtungsweisende Arbeit aus Dresden
28.05.2020 | Technische Universität Dresden

nachricht Struktur mit dem gewissen Extra
25.05.2020 | INNOVENT e.V. Technologieentwicklung Jena

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuartiges Covid-19-Schnelltestverfahren auf Basis innovativer DNA-Polymerasen entwickelt

Eine Forschungskooperation der Universität Konstanz unter Federführung von Professor Dr. Christof Hauck (Fachbereich Biologie) mit Beteiligung des Klinikum Konstanz, eines Konstanzer Diagnostiklabors und des Konstanzer Unternehmens myPOLS Biotec, einer Ausgründung aus der Arbeitsgruppe für Organische Chemie / Zelluläre Chemie der Universität Konstanz, hat ein neuartiges Covid-19-Schnelltestverfahren entwickelt. Dieser Test ermöglicht es, Ergebnisse in der Hälfte der Zeit zu ermitteln – im Vergleich zur klassischen Polymerase-Ketten-Reaktion (PCR).

Die frühe Identifikation von Patienten, die mit dem neuartigen Coronavirus (SARS-CoV-2) infiziert sind, ist zentrale Voraussetzung bei der globalen Bewältigung...

Im Focus: Textilherstellung für Weltraumantennen startet in die Industrialisierungsphase

Im Rahmen des EU-Projekts LEA (Large European Antenna) hat das Fraunhofer-Anwendungszentrum für Textile Faserkeramiken TFK in Münchberg gemeinsam mit den Unternehmen HPS GmbH und Iprotex GmbH & Co. KG ein reflektierendes Metallnetz für Weltraumantennen entwickelt, das ab August 2020 in die Produktion gehen wird.

Beim Stichwort Raumfahrt werden zunächst Assoziationen zu Forschungen auf Mond und Mars sowie zur Beobachtung ferner Galaxien geweckt. Für unseren Alltag sind...

Im Focus: Biotechnologie: Enzym setzt durch Licht neuartige Reaktion in Gang

In lebenden Zellen treiben Enzyme biochemische Stoffwechselprozesse an. Auch in der Biotechnologie sind sie als Katalysatoren gefragt, um zum Beispiel chemische Produkte wie Arzneimittel herzustellen. Forscher haben nun ein Enzym identifiziert, das durch die Beleuchtung mit blauem Licht katalytisch aktiv wird und eine Reaktion in Gang setzt, die in der Enzymatik bisher unbekannt war. Die Studie ist in „Nature Communications“ erschienen.

Enzyme – in jeder lebenden Zelle sind sie die zentralen Antreiber für biochemische Stoffwechselprozesse und machen dort Reaktionen möglich. Genau diese...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: Innovative Sensornetze aus Satelliten

In Würzburg werden vier Kleinst-Satelliten auf ihren Start vorbereitet. Sie sollen sich in einer Formation bewegen und weltweit erstmals ihre dreidimensionale Anordnung im Orbit selbstständig kontrollieren.

Wenn ein Gegenstand wie der Planet Erde komplett ohne tote Winkel erfasst werden soll, muss man ihn aus verschiedenen Richtungen ansehen und die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gebäudewärme mit "grünem" Wasserstoff oder "grünem" Strom?

26.05.2020 | Veranstaltungen

Dresden Nexus Conference 2020 - Gleicher Termin, virtuelles Format, Anmeldung geöffnet

19.05.2020 | Veranstaltungen

Urban Transport Conference 2020 in digitaler Form

18.05.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ein wichtiger Schritt zum Neuromorphen Rechnen: richtungsweisende Arbeit aus Dresden

28.05.2020 | Materialwissenschaften

Wieso Radium-Monofluorid den Blick ins Universum fundamental verändern kann

28.05.2020 | Physik Astronomie

Neuartiges Covid-19-Schnelltestverfahren auf Basis innovativer DNA-Polymerasen entwickelt

28.05.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics