Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Plättchen statt Kügelchen machen Bildschirme sparsam

20.01.2020

ETH-Wissenschaftler haben die QLED-Technologie für Bildschirme weiterentwickelt. Sie stellten Lichtquellen her, die zum ersten Mal Licht in hoher Intensität in nur eine Richtung ausstrahlen. Dies verringert Streuverluste, was die Technologie äusserst energieeffizient macht.

Seit wenigen Jahren gibt es QLED-Bildschirme zu kaufen. Sie sind bekannt für ihre hellen, intensiven Farben, welche mit der sogenannten Quantenpunkt-Technologie erzeugt werden. QLED steht für Quantenpunkt-Leuchtdiode.


Eine mit mehreren Lagen extrem dünner Halbleiter-Nanoplättchen beschichtete Glasscheibe, die mit UV-Licht beschienen wird und blaues Licht aussendet.

ETH Zürich / Jakub Jagielski

Forschende der ETH Zürich haben nun eine Technologie entwickelt, welche die Energieeffizienz der QLEDs erhöht. Die Wissenschaftler erreichten dies, indem sie die Streuverluste des Lichts im Innern der Dioden minimierten. Damit tritt ein grösserer Anteil des erzeugten Lichts nach aussen.

Konventionelle QLEDs bestehen aus einer Vielzahl von kugelförmigen Halbleiter-Nanokristallen, die auch Quantenpunkte genannt werden. In einem Bildschirm werden diese Nanokristalle von hinten mit UV-Licht angeregt.

Die Kristalle wandeln dieses in farbiges Licht im sichtbaren Bereich um. Je nach Materialzusammensetzung des Nanokristalls entsteht eine andere Farbe.

Allerdings streuen diese kugelförmigen Nanokristalle das erzeugte Licht im Innern des Bildschirms auf alle Seiten. Nur rund ein Fünftel des erzeugten Lichts tritt aus und ist für den Betrachter sichtbar.

Um die Energieeffizienz der Technologie zu erhöhen, versuchen Wissenschaftler seit Jahren, Nanokristalle zu entwickeln, die Licht nur in eine Richtung (nach vorne, zum Betrachter hin) abgeben.

Die ersten solchen Lichtquellen existieren auch bereits. Sie bestehen nicht aus kugelförmigen Kristallen, sondern aus ultradünnen Nanoplättchen. Diese emittierten Licht nur in eine Richtung – rechtwinklig zur Plättchenebene.

Werden diese Nanoplättchen nebeneinander in einer Schicht angeordnet, erzeugen sie ein verhältnismässig schwaches Licht, das für Bildschirme nicht ausreicht.

Um die Lichtintensität zu erhöhen, verfolgen Wissenschaftler den Ansatz, mehrere Schichten solcher Plättchen übereinander zu legen. Dabei beginnen die Plättchen jedoch miteinander zu wechselwirken, und das Licht wird wiederum nicht nur in eine Richtung, sondern auf alle Seiten ausgesandt.

Gestapelt und voneinander isoliert

Die Forschenden unter der Leitung von Chih-Jen Shih, Professor für technische Chemie an der ETH Zürich, haben nun extrem (2,4 Nanometer) dünne Halbleiterplättchen so gestapelt, dass sie durch eine noch dünnere (0,65 Nanometer) Isolierschicht aus organischen Molekülen voneinander getrennt sind.

Diese Schicht unterbindet quantenphysikalische Wechselwirkungen, wodurch die Plättchen auch in gestapelter Anordnung Licht überwiegend in nur eine Richtung emittieren.

«Je mehr Plättchen wir übereinanderstapeln, desto intensiver wird dabei das Licht. Wir können so die Lichtintensität beeinflussen, ohne dabei die bevorzugte Emissionsrichtung zu verlieren», sagt Jakub Jagielski, Doktorand in Shihs Gruppe und Erstautor der in der Zeitschrift Nature Communications [http://dx.doi.org/10.1038/s41467-019-14084-3] veröffentlichen Fachpublikation. Die Wissenschaftler haben damit zum ersten Mal ein Material hergestellt, das Licht in hoher Intensität in nur eine Richtung emittiert.

Sehr energieeffizientes blaues Licht

Die Forschenden konnten damit Lichtquellen für blaues, grünes, gelbes und oranges Licht herstellen. Die für Bildschirme ebenfalls nötige rote Farbkomponente lässt sich laut den Wissenschaftlern derzeit noch nicht mit der neuen Technologie realisieren.

Für das neu geschaffene blaue Licht gilt: Statt einem Fünftel des erzeugten Lichts wie bei der herkömmlichen QLED-Technologie erreichen nun rund zwei Fünftel davon das Auge des Betrachters.

«Das heisst, um Licht mit einer bestimmten Intensität zu erzeugen, benötigen wir mit unserer Technologie im Vergleich zur herkömmlichen QLED-Technologie nur halb so viel Energie», sagt ETH-Professor Shih. Bei anderen Farben ist der Effizienzgewinn derzeit allerdings noch kleiner. Die Wissenschaftler versuchen daher in weiterer Forschungsarbeit, diesen auch dort zu erhöhen.

Im Vergleich zu herkömmlichen LEDs hat die neue Technologie einen weiteren Vorteil, wie die Wissenschaftler betonen: Die neuartigen gestapelten QLEDs sind sehr einfach in einem einzigen Schritt herzustellen.

Bei herkömmlichen LEDs ist es ebenfalls möglich, die Intensität zu erhöhen, indem mehrere lichtemittierende Schichten übereinander angeordnet werden. Deren Herstellung erfolgt allerdings Schicht für Sicht und ist entsprechend aufwendiger.

Originalpublikation:

Jagielski J, Solari SF, Jordan L, Scullion D, Blülle B, Li YT, Krumeich F, Chiu YC, Ruhstaller B, Santos EJG, Shih CJ: Scalable photonic sources using two-dimensional lead halide perovskite superlattices. Nature Communications 2020, doi: 10.1038/s41467-019-14084-3 [http://dx.doi.org/10.1038/s41467-019-14084-3]

Weitere Informationen:

https://ethz.ch/de/news-und-veranstaltungen/eth-news/news/2020/01/qled-plaettche...

Hochschulkommunikation | Eidgenössische Technische Hochschule Zürich (ETH Zürich)
Weitere Informationen:
http://www.ethz.ch

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Charakterisierung von thermischen Schnittstellen für modulare Satelliten
19.02.2020 | Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung

nachricht Freiburger Forscher untersucht Ursprünge der Beschaffenheit von Oberflächen
17.02.2020 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Loopings der Bakterien: Forschungsteam mit Beteiligung der Universität Göttingen analysiert Fortbewegung

Das magnetotaktische Bakterium Magnetococcus marinus schwimmt mit Hilfe von zwei Bündeln von Geißeln. Außerdem besitzen die Bakterienzellen eine Art intrazelluläre Kompassnadel und können daher mit einem Magnetfeld gesteuert werden. Sie werden deshalb als biologisches Modell für Mikroroboter benutzt. Ein internationales Team der Universität Göttingen, des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung in Potsdam und der CEA Cadarache (Frankreich) hat nun aufgeklärt, wie sich diese Bakterien bewegen und deren Schwimmgeschwindigkeit bestimmt. Die Ergebnisse sind in der Fachzeitschrift eLife erschienen.

Die Forscherinnen und Forscher nutzten eine Kombination von neuen experimentellen Methoden und Computersimulationen: Sie verfolgten die Bewegung der...

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Schiffsexpedition bringt Licht ins Innere der Erde

24.02.2020 | Geowissenschaften

Elektronenbeugung zeigt winzige Kristalle in neuem Licht

24.02.2020 | Biowissenschaften Chemie

Antikörper als Therapiealternative bei Tumoren am Hör- und Gleichgewichtsnerv?

24.02.2020 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics