Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nachhaltig und wirtschaftlich: Das Recyceln von Faserverbundkunststoffen

07.03.2019

Forschungsteam der TH Nürnberg entwickelt innovatives Recyclingverfahren bei geringem Energieaufwand

Der Industrieeinsatz von Faserverbundkunststoffe im Leichtbau, wie in der Luftfahrt oder der Automobilbranche, wächst stetig. Daher haben die Wirtschaft und die Politik ein großes Interesse daran, die ausrangierten Bauteile aus Faserverbundkunststoffen wieder zu verwerten.


Carbonfasern (oben), Prüfstäbe aus Harz (gelbe Stäbe links), CFK-Verbundwerkstoff (schwarze Platte unten)

Herbert Schlachter/TH Nürnberg

Die Arbeitsgruppe um Prof. Dr. Gerd Wehnert von der Fakultät Angewandte Chemie der TH Nürnberg entwickelt im Forschungsprojekt „CERES“ eine Methode, vernetzte Kunststoffe auf Epoxidharzbasis einfach, schnell und mit geringem Energieaufwand zu recyceln. Die STAEDTLER Stiftung fördert erfreulicherweise dieses spannende Projekt mit 40.000 Euro.

Nürnberg, 7. März 2019. Das Forschungsteam um Prof. Dr. Gerd Wehnert von der Fakultät Angewandte Chemie der TH Nürnberg forscht im Projekt „CERES“ (Chemisches Recycling epoxidharzbasierter Stoffe) an einer Methode, Faserverbundkunststoffe kosteneffizient zu recyceln. Ein Durchbruch könnte der Wirtschaft einen großen Mehrgewinn bringen.

Der Airbus A350, der BMW i3 und Windkraftanlagen haben eines gemeinsam: Sie alle werden aus Faserverbundkunststoffen hergestellt. Faserverbundkunststoffe bestehen aus Verstärkungsfasern und einer Kunststoffmatrix. Sie bilden eine synergetische Kombination der Eigenschaften ihrer Einzelkomponenten: die verstärkenden, kraftaufnehmenden Fasern sowie die formgebende Matrix, die auch als Schutz vor äußeren Einflüssen dient.

Die Faserverbundkunststoffe haben eine hohe Festigkeit und Steifheit bei vergleichsweise geringer Dichte – das macht sie für den Leichtbau wie in der Luftfahrt oder im Automobilbau, aber auch für die Sport- und Freizeitindustrie interessant.

Durch den stetig wachsenden Einsatz von Faserverbundkunststoffen haben die Wirtschaft und die Politik ein großes Interesse daran, die Nachhaltigkeit dieser Stoffe zu steigern. Prof. Dr. Gerd Wehnert entwickelt ein Verfahren, die Faserverbundkunststoffe zu recyceln und die enthaltenen Fasern mit geringem Energieaufwand einfach und schnell wiederverwerten zu können.

Die Faserverbundkunststoffe bestehen teilweise aus einer Kunststoffmatrix. Diese Kunststoffmatrix ist oftmals ein Epoxidharz – ein aushärtendes Kunstharz, das starke Belastungen aushält. Der jährliche Gesamtumsatz an Epoxidharzen liegt bei rund 9,2 Milliarden US-Dollar, das birgt ein hohes Potenzial.

„Nach aktuellem Stand der Technik können gerade die häufig eingesetzten epoxidharzbasierten Verbundkunststoffe nur sehr energie- und zeitaufwendig und damit kostenintensiv recycelt werden“, so Prof. Dr. Gerd Wehnert.

Duromere, durch chemische Reaktion vernetzte Kunststoffe, lassen sich nicht mehr aufschmelzen – sie können bisher nicht effizient recycelt werden. Eine gute Möglichkeit zur Weiterverwendung würde in einem chemischen Recycling bestehen, bei dem die Vernetzungsstellen chemisch gespalten und das Duromer so in kleinere, lösliche Moleküle zerlegt wird.

Bei Epoxidharzen, wie der Kunststoffmatrix bei den Faserverbundkunststoffen, ist es noch nicht gelungen, dieses Prinzip technisch anzuwenden. An diesem Punkt setzt das Forschungsprojekt „CERES“ an. Prof. Dr. Gerd Wehnert und sein Team forschen an einem Recyclingreagenz, mit der die Solvolyse der Faserverbundkunststoffe möglich ist, d.h. der Bruch der chemischen Bindung durch ein spezielles Reagenz.

Das Ziel ist, dabei die kostspieligen Fasern nicht zu beschädigen, eine Wiederverwertung ist so möglich. Als Agens für diese Reaktion untersucht das Forschungsteam eine Chemikalienkombination, die Epoxidharznetzwerke bereits bei geringem Energieaufwand einfach, schnell und nahezu vollständig zersetzen könnte.

„Für das Recycling von epoxidharzbasierten Faserverbundkunststoffen liegt der Schlüssel in der chemischen Spaltung. Wir entwickeln deshalb in diesem Forschungsprojekt ein Reagenz zur Zersetzung der Vernetzungsstellen von Epoxidharzen“, so Prof. Dr. Gerd Wehnert.

„Wir stellen Epoxidharzmodellnetzwerke her und erproben daran Reagenzien, die die Modellnetzwerke spalten können. Ist ein Reagenz technisch einsatzfähig, übertragen wir es auf epoxidharzbasierte Faserverbundstoffe.“

Sobald das Reagenz die Matrix des epoxidharzbasierten Bauteils angegriffen hat, wird die zersetzte Matrix von den Fasern gewaschen. Dieses Verfahren sichert die kostbaren Fasern, die anschließend für die Herstellung neuer Faserbundkunststoffe wiederverwertet werden können.

Das Labor für makromolekulare Chemie an der Fakultät Angewandte Chemie der TH Nürnberg bietet durch sein kompetentes Team und die funktionale und moderne Ausstattung gute Voraussetzungen für die Forschung an diesem innovativen Recyclingverfahren. Die Arbeitsgruppe um Prof. Dr. Gerd Wehnert leistet mit diesem Forschungsprojekt nicht nur einen Beitrag für die Nachhaltigkeit, sondern auch für die Wirtschaftlichkeit.

So weist ein Kilogramm von zehn Millimeter langen, matrixfreien Carbonkurzfasern einen Marktwert von etwa 150 Euro auf. Auf die Gesamtproduktion eines Jahres gerechnet, haben die recycelten Fasern einen Wert von etwa 3,5 Milliarden Euro, für die Wirtschaft ist das ein erheblicher Mehrwert.
Die STAEDTLER Stiftung fördert erfreulicherweise dieses spannende Projekt mit 40.000 Euro.

Hinweis für Redaktionen:
Kontakt:
Hochschulkommunikation, Tel. 0911/5880-4101, E-Mail: presse@th-nuernberg.de

Jasmin Bauer | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.th-nuernberg.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Bayreuther Forscher entdecken stabiles hochenergetisches Material
14.10.2019 | Universität Bayreuth

nachricht Neuer Werkstoff für den Bootsbau
14.10.2019 | Technische Hochschule Mittelhessen

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuer Werkstoff für den Bootsbau

Um die Entwicklung eines Leichtbaukonzepts für Sportboote und Yachten geht es in einem Forschungsprojekt der Technischen Hochschule Mittelhessen. Prof. Dr. Stephan Marzi vom Gießener Institut für Mechanik und Materialforschung arbeitet dabei mit dem Bootsbauer Krake Catamarane aus dem thüringischen Apolda zusammen. Internationale Kooperationspartner sind Prof. Anders Biel von der schwedischen Universität Karlstad und die Firma Lamera aus Göteborg. Den Projektbeitrag der THM fördert das Bundesministerium für Wirtschaft und Energie im Rahmen des Zentralen Innovationsprogramms Mittelstand mit 190.000 Euro.

Im modernen Bootsbau verwenden die Hersteller als Grundmaterial vorwiegend Duroplasten wie zum Beispiel glasfaserverstärkten Kunststoff. Das Material ist...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: Ultraschneller Blick in die Photochemie der Atmosphäre

Physiker des Labors für Attosekundenphysik haben erkundet, was mit Molekülen an den Oberflächen von nanoskopischen Aerosolen passiert, wenn sie unter Lichteinfluss geraten.

Kleinste Phänomene im Nanokosmos bestimmen unser Leben. Vieles, was wir in der Natur beobachten, beginnt als elementare Reaktion von Atomen oder Molekülen auf...

Im Focus: Wie entstehen die stärksten Magnete des Universums?

Wie kommt es, dass manche Neutronensterne zu den stärksten Magneten im Universum werden? Eine mögliche Antwort auf die Frage nach der Entstehung dieser sogenannten Magnetare hat ein deutsch-britisches Team von Astrophysikern gefunden. Die Forscher aus Heidelberg, Garching und Oxford konnten mit umfangreichen Computersimulationen nachvollziehen, wie sich bei der Verschmelzung von zwei Sternen starke Magnetfelder bilden. Explodieren solche Sterne in einer Supernova, könnten daraus Magnetare entstehen.

Wie entstehen die stärksten Magnete des Universums?

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2019

14.10.2019 | Veranstaltungen

10. Weltkonferenz der Ecosystem Services Partnership an der Leibniz Universität Hannover

14.10.2019 | Veranstaltungen

Bildung.Regional.Digital: Tagung bietet Rüstzeug für den digitalen Unterricht von heute und morgen

10.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Technologiemodul senkt Ausschussrate von Mikrolinsen auf ein Minimum

14.10.2019 | Informationstechnologie

Diagnostik für alle

14.10.2019 | Biowissenschaften Chemie

Bayreuther Forscher entdecken stabiles hochenergetisches Material

14.10.2019 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics