Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare Multiwerkzeuge

05.10.2018

Die Funktionalisierung von Oberflächen mit verschiedenen physikalischen oder chemischen Eigenschaften ist eine Anforderung in vielen Anwendungsgebieten. So erlaubt zum Beispiel die Strukturierung von Oberflächen mit wasserliebenden und wasserabweisenden Flächen eine Trennung von Emulsionen, wie bspw. Wasser und Öl. Die Schaffung von definierten Oberflächeneigenschaften ist jedoch eine Herausforderung. Forscher des Max-Planck-Instituts für Polymerforschung in Mainz, der beiden chinesischen Universitäten für Wissenschaft und Technik (Hefei) sowie für elektronische Wissenschaft und Technologie (Chengdu) haben nun Oberflächen entwickelt, die durch sichtbares Licht strukturiert werden können.

Das internationale Team von Wissenschaftlern hat Oberflächen entwickelt, die mit einem speziellen Molekül bedeckt sind, welches ein Ruthenium-Atom in seinem Zentrum hat. Dieser Molekül-Komplex ist fest mit der Oberfläche verbunden und wirkt quasi als molekularer Schraubenzieher.


Schematische Darstellung des Austauschs von Oberflächen-Funktionen durch sichtbares Licht.

© MPI-P

„Man kann sich dieses Molekül als Schraubenzieher vorstellen, an den verschiedene Bits angedockt werden können. Dies bedeutet, dass wir die Oberfläche durch Wechsel der Bits mit verschiedenen Funktionen ausstatten können, wie z. B. wasserabweisenden Eigenschaften“, sagt Prof. Dr. Si Wu, Gruppenleiter am MPI-P (Abteilung von Prof. Dr. Hans-Jürgen Butt).

Das Andocken von solchen Bits – hier, sogenannten „Thioether-Gruppen“, organischen Molekülen, die ein Schwefelatom aufweisen – wurde bisher durch chemische Verbindungen bewerkstelligt, die nur schwer wieder entfernt werden konnten. Eine Entfernung war in der Vergangenheit nur über komplizierte chemische Methoden möglich, die gleichzeitig die funktionalen Thioether-Gruppen sowie die an der Oberfläche angebrachten Ruthenium-Komplexe zerstörte.

In ihrer Veröffentlichung zeigten die Forscher, dass die Entfernung der Thioether-Gruppen – also der Bits – einfach durch sichtbares Licht möglich ist. „Dies ist sehr wichtig wenn wir z. B. an Biomoleküle auf der Oberfläche denken, die durch UV-Licht zerstört werden können. Daher haben wir in unserer Arbeit mit sichtbarem Licht experimentiert, das weniger Energie besitzt und damit ggf. angedockte Biomoleküle nicht zerstört“, so Wu.

Mit der neu entwickelten Methode ist es somit möglich, Oberflächen sehr einfach zu strukturieren. Im Dunkeln wird die komplette Oberfläche mit einem Molekül mit gewünschten, beispielsweise wasserabweisenden, Eigenschaften funktionalisiert. Die Oberfläche wird daraufhin durch eine Schattenmaske beleuchtet.

Dies löst die Verbindungen zwischen dem Ruthenium-Komplex, der fest mit der Oberfläche verbunden ist, und der angedockten funktionalen Thioether-Gruppe. Nach Waschen der Oberfläche wird die Funktionalität somit an den belichteten Stellen entfernt, nur die unbelichteten Stellen bleiben zurück.

Da der Ruthenium-Komplex fest mit der Oberfläche verbunden ist, beim Waschen also zurückbleibt, kann er immer wieder genutzt werden, um andere „Bits“ – andere Funktionalitäten – auf die Oberfläche aufzubringen. Daher kann die Oberfläche mehrfach rekonfiguriert werden.
Ihre Resultate haben die Forscher nun in dem renommierten Journal „Nature Communications“ veröffentlicht.

Über Prof. Dr. Si Wu
Si Wu wurde 1982 in Chongqing, China geboren. Er studierte Polymerchemie an der “University of Science and Technology of China (USTC)”, Hefei, China und erhielt einen Bachelor-Grad im Jahr 2005. Er wurde unterstützt durch das gemeinsame Promotionsprogram der USTC mit dem Max-Planck-Institut für Polymerforschung. Im Jahr 2010 erhielt er seinen Doktorgrad mit einer Arbeit zu photoresponsiven Verbindungen von Azopolymeren. Seit 2012 ist er Gruppenleiter am MPI-P. 2018 wurde er als Professor an die USTC berufen und gründete eine neue Gruppe in Hefei. Aufgrund seiner Untersuchungen zu photoresponsiven Materialien bekam Si Wu eine Auszeichnung als eines der 10 führenden chinesischen Talenten in Wissenschaft und Technologie in Europa im Jahr 2016 in Dänemark verliehen.

Max-Planck-Institut für Polymerforschung
Das Max-Planck-Institut für Polymerforschung (MPI-P) zählt zu den international führenden Forschungszentren auf dem Gebiet der Polymerforschung. Durch die Fokussierung auf weiche Materie und makromolekulare Materialien ist das MPI-P mit seiner Forschungsausrichtung weltweit einzigartig. Seine Aufgabe ist es, neue Polymere herzustellen und zu charakterisieren. Zum Aufgabengebiet gehört auch die Untersuchung ihrer physikalischen und chemischen Eigenschaften. Das MPI-P wurde 1984 gegründet. Es beschäftigt mehr als 500 Mitarbeiterinnen und Mitarbeiter aus dem In- und Ausland, von denen die große Mehrzahl mit Forschungsaufgaben befasst ist.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Si Wu
Physics of Interfaces
Max Planck Institute for Polymer Research
Ackermannweg 10
D-55128 Mainz
Tel. +49(0)6131/379-196
email: wusi@mpip-mainz.mpg.de

Originalpublikation:

https://www.nature.com/articles/s41467-018-06180-7

Weitere Informationen:

http://www.mpip-mainz.mpg.de/4392775/Dr_Si_Wu - Webseite von Prof. Dr. Si Wu
http://www.mpip-mainz.mpg.de - Webseite des MPI-P

Dr. Christian Schneider | Max-Planck-Institut für Polymerforschung

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Neue Methoden zur Beschichtung von Schiffsrümpfen
22.03.2019 | Hochschule Coburg

nachricht Innovative Zusatzwerkstoffe für den 3D-Druck machen komplexe Metallbauteile hochfest und leicht
22.03.2019 | Brandenburgische Technische Universität Cottbus-Senftenberg

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Zähmung der Lichtschraube

Wissenschaftler vom DESY und MPSD erzeugen in Festkörpern hohe-Harmonische Lichtpulse mit geregeltem Polarisationszustand, indem sie sich die Kristallsymmetrie und attosekundenschnelle Elektronendynamik zunutze machen. Die neu etablierte Technik könnte faszinierende Anwendungen in der ultraschnellen Petahertz-Elektronik und in spektroskopischen Untersuchungen neuartiger Quantenmaterialien finden.

Der nichtlineare Prozess der Erzeugung hoher Harmonischer (HHG) in Gasen ist einer der Grundsteine der Attosekundenwissenschaft (eine Attosekunde ist ein...

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetische Mikroboote

Nano- und Mikrotechnologie sind nicht nur für medizinische Anwendungen wie in der Wirkstofffreisetzung vielversprechende Kandidaten, sondern auch für die Entwicklung kleiner Roboter oder flexibler integrierter Sensoren. Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) haben mit einer neu entwickelten Methode magnetische Mikropartikel hergestellt, die den Weg für den Bau von Mikromotoren oder die Zielführung von Medikamenten im menschlichen Körper, wie z.B. zu einem Tumor, ebnen könnten. Die Herstellung solcher Strukturen sowie deren Bewegung kann einfach durch Magnetfelder gesteuert werden und findet daher Anwendung in einer Vielzahl von Bereichen.

Die magnetischen Eigenschaften eines Materials bestimmen, wie dieses Material auf das Vorhandensein eines Magnetfeldes reagiert. Eisenoxid ist der...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Goldkugel im goldenen Käfig

„Goldenes Fulleren“: Liganden-geschützter Nanocluster aus 32 Goldatomen

Forschern ist es gelungen, eine winzige Struktur aus 32 Goldatomen zu synthetisieren. Dieser Nanocluster hat einen Kern aus 12 Goldatomen, der von einer Schale...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größte nationale Tagung 2019 für Nuklearmedizin in Bremen

21.03.2019 | Veranstaltungen

6. Magdeburger Brand- und Explosionsschutztage vom 25. bis 26.3. 2019

21.03.2019 | Veranstaltungen

Teilchenphysik trifft Didaktik und künstliche Intelligenz in Aachen

20.03.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Zähmung der Lichtschraube

22.03.2019 | Physik Astronomie

Saarbrücker Forscher erleichtern durch Open Source-Software den Durchblick bei Massen-Sensordaten

22.03.2019 | HANNOVER MESSE

Ketten aus Stickstoff direkt erzeugt

22.03.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics