Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Metalle an der Grenze der Verformbarkeit

28.09.2017

Forscher der Technischen Universität Darmstadt und des Lawrence Livermore National Laboratory in Kalifornien können erstmals mit neu entwickelten, präzisen Computermodellen den Verformungsprozess metallischer Werkstoffe bis auf einzelne Atome genau vorhersagen. Ihre Arbeit ist jetzt in „Nature“ erschienen.

Im Zentrum der wissenschaftlichen Arbeit stehen „Liniendefekte“ – Unregelmäßigkeiten im ansonsten ganz regelmäßigen Kristallgitter, dem aus Atomen zusammengesetzten inneren Gerüst eines Metalls. Sie entstehen zum Beispiel durch Krafteinwirkung von außen.


Simulationsmodell eines verformten Tantalkristalls. Ausgehend von den einzelnen Atomen (gelb) hat ein Algorithmus die Form der Versetzungsdefekte (grüne Linien) u. d. Zwillingsgrenzen (graue Flächen)

Alexander Stukowski

Mit einer Reihe aufwendiger Computersimulationen konnte das deutsch-amerikanische Team studieren, wie sich Liniendefekte in Metallen, sogenannte Versetzungen, vermehren und unter welchen Bedingungen sie auf sie wirkende mechanische Verformungskräfte nicht mehr genügend abbauen können.

Stattdessen kommt dann ein neuer Mechanismus ins Spiel, sogenannte Zwillingsbildung, bei der die Ausrichtung des Kristallgitters umorientiert wird. Die Forschungsarbeit, an der Dr. Alexander Stukowski vom Fachbereich Material- und Geowissenschaften der TU Darmstadt beteiligt ist, ist am 27. September in der Zeitschrift Nature erschienen.

Festigkeit und Verformbarkeit eines Metalls, wie beispielsweise des in der Studie betrachteten Tantals, werden entscheidend durch Liniendefekte im kristallinen Aufbau auf der atomaren Ebene bestimmt. Diese Versetzungen sind für das Abgleiten der regelmäßig angeordneten Atomlagen in der Kristallstruktur verantwortlich, das bei plastischer Verformung des Werkstoffs auftritt.

Die Theorie der Versetzungen wurde in den 1930er Jahren entwickelt. Seitdem hat sich die Forschung vor allem der Wechselwirkung dieser linienförmigen Kristallfehler gewidmet, da sie eine wichtige Rolle für die Verfestigung von Metallen spielt. Hierbei nimmt die Festigkeit des Materials durch die fortlaufende Verformung zu – ein Effekt, der beispielweise von einem Schmied ausgenutzt wird, der ein Metall mit Hammer und Amboss bearbeitet.

„Wir sagen mit unserem Computermodell vorher, dass der Kristall letztendlich einen stationären Zustand einnehmen und in ihm unbegrenzt verweilen kann, nachdem er seine maximale Festigkeit erreicht hat“, sagt Dr. Alexander Stukowski, Mitautor der Studie. „Bereits vor Jahrtausenden wussten Schmiede intuitiv, dass sie die mechanischen Eigenschaften von Metallteilen durch das wiederholte Bearbeiten mit dem Hammer von verschiedenen Seiten deutlich verbessern können. Genau solch ein „Kneten“ des Metalls stellen wir in unserer atomar aufgelösten Simulation nach.“

Bislang galten die dabei relevanten Zeit- und Längenskalen als unüberwindbares Hindernis: Ein Kubikmikrometer Metall besteht typischerweise aus 60 Milliarden Atomen. Die Wissenschaftler können, aufbauend auf den Ergebnissen der in Nature veröffentlichten Arbeiten, heute berechnen, wie die Atome untereinander wechselwirken und die Bewegungsbahn jedes einzelnen Atoms über viele Millionen Zeitschritte hinweg verfolgen.

Aufgrund der riesigen Datenmenge und des notwendigen Rechenaufwands waren solch detaillierte numerische Simulationen für die Vorhersage von Metall¬festigkeit bisher praktisch undenkbar. Wie das Forscherteam jetzt zeigte, sind solche atomistischen Simulationen möglich – und sie können eine Fülle von Beobachtungen zu den mikroskopischen Prozessen liefern, die für das dynamische Verformungsverhalten metallischer Werkstoffe von fundamentaler Bedeutung sind.

„Wir können in unserer Metallsimulation das Kristallgitter und die vielen Atome, aus denen es sich zusammensetzt, mit allen Details sehen und die Veränderung während der einzelnen Verformungsphasen studieren“, sagt Alexander Stukowski. „Die große Zahl der Atome und die Komplexität der dreidimensionalen Versetzungsstrukturen überfordern jedoch selbst ein geschultes Auge bei weitem. In unserer Forschungsgruppe in Darmstadt haben wir daher präzise Analysemethoden und Computeralgorithmen entwickelt, die Kristallfehler automatisch klassifizieren, herausfiltern und sichtbar machen können.“

Erst der Einsatz leistungsfähiger Supercomputer macht entsprechende Simulationen möglich, in denen die Bewegungsbahnen vieler Millionen oder Milliarden einzelner Atome berechnet und damit das Festigkeitsverhalten eines metallischen Werkstoffs unter schneller Verformung vorhergesagt werden kann.

Die Forscher setzten für ihre Studie Großrechner der höchsten Leistungsklasse am Lawrence Livermore National Laboratory und am Helmholtz-Forschungszentrum Jülich ein. Zur Auswertung und Darstellung der generierten Simulationsdaten diente eine Spezialversion der Software OVITO, die am Fachbereich Material- und Geowissenschaften der TU Darmstadt entwickelt und weltweit von Forschern eingesetzt wird.

Das Verfahren ermögliche nun einen ganz neuen Zugang zum Forschungsgegenstand, sagt Stukowski und zitiert den Physiker Colin Humphreys: „Kristalle sind wie Menschen. Es sind ihre Fehler, die sie interessant machen.“

Die Veröffentlichung
http://dx.doi.org/10.1038/nature23472

Informationen zur verwendeten Software:
http://www.ovito.org/

Kontakt:
Fachbereich Material- und Geowissenschaften
Fachgebiet Materialmodellierung
Dr. Alexander Stukowski
Tel.: 06151/16-21898
E-Mail: stukowski@mm.tu-darmstadt.de

MI-Nr. 86/2017, Stukowski/sip

Simone Eisenhuth | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.tu-darmstadt.de/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Implantate aus Nanozellulose: Das Ohr aus dem 3-D-Drucker
15.01.2019 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Atomarer Mechanismus der Supraschmierung aufgeklärt
11.01.2019 | Fraunhofer-Institut für Werkstoffmechanik IWM

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedankenexperiment mithilfe eines verschränkten Atom-Licht-Zustands.

Bereits 1935 formulierte Erwin Schrödinger die paradoxen Eigenschaften der Quantenphysik in einem Gedankenexperiment über eine Katze, die gleichzeitig tot und...

Im Focus: Implantate aus Nanozellulose: Das Ohr aus dem 3-D-Drucker

Aus Holz gewonnene Nanocellulose verfügt über erstaunliche Materialeigenschaften. Empa-Forscher bestücken den biologisch abbaubaren Rohstoff nun mit zusätzlichen Fähigkeiten, um Implantate für Knorpelerkrankungen mittels 3-D-Druck fertigen zu können.

Alles beginnt mit einem Ohr. Empa-Forscher Michael Hausmann entfernt das Objekt in Form eines menschlichen Ohrs aus dem 3-D-Drucker und erklärt: «Nanocellulose...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Roter Riesenvollmond in den Morgenstunden des 21. Januar

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg - Frühaufsteher sind diesmal im Vorteil: Wer am Morgen des 21. Januar 2019 vor 6:45 Uhr einen Blick an den Himmel wirft, kann eine totale Mondfinsternis bestaunen. Dann leuchtet der sonst so strahlende Vollmond zwischen den Sternbildern Zwillingen und Krebs glutrot.

Um das Finsternis-Spektakel in seiner gesamten Länge zu verfolgen, muss man allerdings sehr früh aus dem Bett: Kurz nach 4:30 Uhr beginnt der Mond sich langsam...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Superbeschleuniger im Fokus

16.01.2019 | Veranstaltungen

BMBF-Technologiegespräch: „Materialinnovationen und Start-up“

16.01.2019 | Veranstaltungen

Tagung zu Antibiotikaresistenzen

15.01.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Superbeschleuniger im Fokus

16.01.2019 | Veranstaltungsnachrichten

BMBF-Technologiegespräch: „Materialinnovationen und Start-up“

16.01.2019 | Veranstaltungsnachrichten

Fliegende optische Katzen für die Quantenkommunikation

16.01.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics