Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Leicht, stark und zäh: Forscher der Universität Bayreuth entdecken einzigartige Polymerfasern

13.12.2019

Extrem belastbar und zugfest, und dabei zäh und federleicht – Materialien mit dieser außergewöhnlichen Kombination von Eigenschaften werden in vielen Industriebranchen sowie in der Medizin dringend benötigt und sind ebenso für die wissenschaftliche Forschung von großem Interesse. Polymerfasern mit eben diesen Eigenschaften hat jetzt ein Forschungsteam der Universität Bayreuth entwickelt. Gemeinsam mit Partnern in Deutschland, China und der Schweiz wurden die Polymerfasern charakterisiert. In der Zeitschrift "Science" stellen die Wissenschaftler ihre Ergebnisse vor.

„Die von uns entdeckten Fasern können mit High-Tech-Verfahren, die in der Industrie bereits etabliert sind, leicht hergestellt werden – und zwar auf der Basis von Polymeren, die weltweit gut verfügbar sind. Eine einzelne Faser ist so dünn wie ein menschliches Haar, wiegt weniger als eine Fruchtfliege und ist dennoch sehr stark: Sie kann ein Gewicht von 30 Gramm heben, ohne zu reißen.


Vorbereitung zum Elektrospinnen.

Foto: Universität Bayreuth / Jürgen Rennecke


Elektrospinnen einer multifibrillaren Polyacrylnitrilfaser.

Foto: Universität Bayreuth / Jürgen Rennecke

Dies entspricht etwa dem 150.000-fachen Gewicht einer Fruchtfliege. Bei Experimenten mit der hohen Zugfestigkeit dieser Fasern wird ihre außerordentliche Zähigkeit sichtbar. Dies bedeutet, dass jede einzelne Faser viel Energie aufnehmen kann“, erklärt Prof. Dr. Andreas Greiner, Inhaber des Lehrstuhls für Makromolekulare Chemie II an der Universität Bayreuth, der die Forschungsarbeiten geleitet hat.

Ebenfalls beteiligt waren Forscher am Forschungszentrum Jülich, an der Martin-Luther-Universität Halle-Wittenberg, am Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS, an der RWTH Aachen, der Jiangxi Normal University, Nanchang, und der ETH Zürich.

Aufgrund ihrer besonderen Eigenschaften eignen sich die Polymerfasern hervorragend für technische Bauteile, die hohen Belastungen ausgesetzt sind. Sie ermöglichen innovative Anwendungen auf den verschiedensten Gebieten, beispielsweise in der Textilindustrie oder der Medizintechnik, im Automobilbau oder in der Luft- und Raumfahrtindustrie. Zudem sind die Polymerfasern gut recycelbar.

„Wir sind sicher, dass wir mit unseren Forschungsergebnissen das Tor zu einer neuen zukunftsweisenden Materialklasse weit aufgestoßen haben. Praktische Anwendungen seitens der Industrie sind schon in naher Zukunft zu erwarten. In den Polymerwissenschaften werden unsere Fasern wertvolle Dienste bei der weiteren Erforschung und Entwicklung hochleistungsfähiger Funktionsmaterialien leisten können“, sagt Greiner.

Die chemische Basis dieser vielversprechenden Fasern ist Polyacrylnitril. Eine einzige Faser, die einen Durchmesser von rund 40.000 Nanometern hat, besteht wiederum aus bis zu 4.000 ultradünnen Fibrillen. Diese Fibrillen werden durch geringe Mengen eines Zusatzstoffes verknüpft.

Dreidimensionale Röntgenbilder zeigen, dass die Fibrillen innerhalb der Faser fast ausnahmslos in der gleichen Längsrichtung angeordnet sind. „Wir haben diese Polymerfasern in einem Labor für Elektrospinnen an der Universität Bayreuth präpariert und umfassend auf ihre Eigenschaften und Verhaltensweisen hin getestet. Die einzigartige Festigkeit in Kombination mit hoher Zähigkeit hat uns dabei immer wieder fasziniert“, berichtet die Bayreuther Polymerwissenschaftlerin Prof. Dr. Seema Agarwal.

Erstautor der in "Science" veröffentlichten Studie ist der Bayreuther Chemie-Doktorand Xiaojian Liao. „Es freut mich sehr, dass ich im Rahmen meiner Doktorarbeit zu diesem materialwissenschaftlichen Forschungserfolg beitragen konnte. Die intensiven interdisziplinären Kontakte zwischen Chemie, Physik und Materialwissenschaften auf dem Bayreuther Campus haben mir in den letzten Jahren wichtige Anregungen gegeben“, sagt Liao.

Weitere Fotos zum Download:
http://www.uni-bayreuth.de/de/universitaet/presse/pressemitteilungen/2019/160-Po...

Video zu den neuen Polymerfasern (engl.)
https://youtu.be/m9khIspNmUo

Wissenschaftliche Ansprechpartner:

Prof. Dr. Andreas Greiner
Universität Bayreuth,
Lehrstuhl Makromolekulare Chemie II und Bayerisches Polymerinstitut (BPI)
Telefon: +49 (0)921 / 55-3399
E-Mail: andreas.greiner@uni-bayreuth.de

Originalpublikation:

Xiaojian Liao, Martin Dulle, Juliana Martins de Souza e Silva, Ralf B. Wehrspohn, Seema Agarwal, Stephan Förster, Haoqing Hou, Paul Smith, Andreas Greiner: High strength in combination with high toughness in robust and sustainable polymeric materials. Science (2019), DOI: http://dx.doi.org/10.1126/science.aay9033

Science hat diesem Forschungserfolg in derselben Ausgabe einen eigenen Beitrag gewidmet: https://science.sciencemag.org/content/366/6471/1314

Christian Wißler | Universität Bayreuth

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Plättchen statt Kügelchen machen Bildschirme sparsam
20.01.2020 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Miniatur-Doppelverglasung: Wärmeisolierendes und gleichzeitig wärmeleitendes Material entwickelt
17.01.2020 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: DKMS-Studie zum Erfolg von Stammzelltransplantationen

Den möglichen Einfluss von Killerzell-Immunoglobulin-ähnlichen Rezeptoren (KIR) auf den Erfolg von Stammzelltransplantationen hat jetzt ein interdisziplinäres Forscherteam der DKMS untersucht. Das Ergebnis: Bei 2222 Patient-Spender-Paaren mit bestimmten KIR-HLA-Kombinationen konnten die Wissenschaftler keine signifikanten Auswirkungen feststellen. Jetzt wollen die Forscher weitere KIR-HLA-Kombinationen in den Blick nehmen – denn dieser Forschungsansatz könnte künftig Leben retten.

Die DKMS ist bekannt als Stammzellspenderdatei, die zum Ziel hat, Blutkrebspatienten eine zweite Chance auf Leben zu ermöglichen. Auch auf der...

Im Focus: Gendefekt bei Zellbaustein Aktin sorgt für massive Entwicklungsstörungen

Europäische Union fördert Forschungsprojekt „PredActin“ mit 1,2 Millionen Euro

Aktin ist ein wichtiges Strukturprotein in unserem Körper. Als Hauptbestandteil des Zellgerüstes sorgt es etwa dafür, dass unsere Zellen eine stabile Form...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

Im Focus: Miniatur-Doppelverglasung: Wärmeisolierendes und gleichzeitig wärmeleitendes Material entwickelt

Styropor oder Kupfer – beide Materialien weisen stark unterschiedliche Eigenschaften auf, was ihre Fähigkeit betrifft, Wärme zu leiten. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz und der Universität Bayreuth haben nun gemeinsam ein neuartiges, extrem dünnes und transparentes Material entwickelt und charakterisiert, welches richtungsabhängig unterschiedliche Wärmeleiteigenschaften aufweist. Während es in einer Richtung extrem gut Wärme leiten kann, zeigt es in der anderen Richtung gute Wärmeisolation.

Wärmeisolation und Wärmeleitung spielen in unserem Alltag eine entscheidende Rolle – angefangen von Computerprozessoren, bei denen es wichtig ist, Wärme...

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

KIT im Rathaus: Städte und Wetterextreme

21.01.2020 | Veranstaltungen

11. Tagung Kraftwerk Batterie - Advanced Battery Power Conference am 24-25. März 2020 in Münster/Germany

16.01.2020 | Veranstaltungen

Leben auf dem Mars: Woher kommt das Methan?

16.01.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Differenzierte Bildgebung für bessere Diagnosen bei Brustkrebs

21.01.2020 | Medizin Gesundheit

Kurilen-Kamchatka-Graben im Pazifischen Ozean gehört nicht mehr zu den „10.000ern“

21.01.2020 | Geowissenschaften

Proteinfunktionen - Ein Lichtblitz genügt

21.01.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics