Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„LAVA“ kann Implantate verbessern

05.02.2016

Werkstoffwissenschaftler der Universität Jena entwickeln keramische Materialien weiter

Ob künstliches Hüftgelenk oder Zahnimplantat, „Ersatzteile“ im menschlichen Körper müssen nicht nur stabil und gut verträglich, sondern auch möglichst langlebig sein. Bislang kommen in der Endoprothetik vor allem Implantate aus Polymeren und Keramik bzw. Polymeren und Metall zum Einsatz.


Das Jenaer Forscherteam um Prof. Dr. Frank A. Müller (M.) nutzt die "Laser-Vaporization", um Nanopartikel für neue Keramik-Implantate herzustellen.

Foto: Jan-Peter Kasper/FSU

Doch manche Patienten reagieren mit Entzündungen auf Polymerabrieb, was die Haltbarkeit des Implantats einschränken kann. Zunehmend finden daher auch andere Werkstoffkombinationen Anwendung, beispielsweise Keramiken aus Zirkon- und Aluminiumoxid.

„Allerdings besteht für solche Keramiken hinsichtlich ihrer Eigenschaften wie möglichst hoher Bruchzähigkeit, Festigkeit und Alterungsbeständigkeit noch erhebliches Optimierungspotenzial“, weiß Prof. Dr. Frank A. Müller von der Friedrich-Schiller-Universität Jena.

Der Materialwissenschaftler und sein Team haben nun mit Partnern des spanischen Instituto de Ciencia de Materiales in Madrid ein Verfahren entwickelt, mit dem sich die Qualität von Zirkon-/Aluminiumoxid-Keramiken entscheidend verbessern lässt. In der gerade erschienenen Ausgabe des Online-Fachmagazins „Scientific Reports“ stellen sie Keramiken vor, die deutlich fester, zäher und alterungsbeständiger sind, als die bisher auf dem Markt verfügbaren Materialien (DOI: 10.1038/srep20589).

Die mechanischen Eigenschaften von Zirkon-/Aluminiumoxid-Keramiken hängen von der Mischung ihrer Ausgangsstoffe sowie der Körnigkeit des Materials ab. „Mit Yttrium stabilisierte Zirkonoxidkeramiken weisen eine hohe mechanische Stabilität auf und sind widerstandsfähig gegen die Ausbreitung von Rissen“, erläutert Prof. Müller. In Kombination mit Aluminiumoxid, das für minimalen mechanischen Abrieb sorgt, lassen sich Werkstoffe herstellen, die hervorragend als Implantate geeignet seien. „Je homogener die Mischung und je feiner die Körnigkeit, umso stabiler das entstehende Material.“

Mit ihrem Verfahren setzen die Jenaer Forscher an genau diesen beiden Punkten an. Als Ausgangsmaterialien für die Keramiken dienen feine Pulver von Yttrium-, Zirkon- und Aluminiumoxid, die homogen gemischt werden. Anschließend wird die Pulvermischung mit Hilfe eines CO2-Lasers verdampft. Bei dieser „Laser vaporization“ (kurz „LAVA“) genannten Methode, bilden sich aus dem etwa 6.000 Grad Celsius heißen Dampf beim Abkühlen winzige Tröpfchen, die zu Nanopartikeln erstarren, in denen die einzelnen Bestandteile wiederum homogen verteilt vorliegen.

Diese durchschnittlich 20 Nanometer kleinen Partikel werden anschließend gesintert – das heißt zur eigentlichen Keramik „gebacken“. Dazu betten die Materialwissenschaftler die Nanopartikel in eine Form aus Kohlenstoff ein, die mit elektrischem Strom unter hohem Druck auf über 1.000 Grad Celsius aufgeheizt wird. Nach nur wenigen Minuten ist das keramische Bauteil, etwa Komponenten für Hüft- oder Kniegelenke, fertig.

Wie das Forscherteam in seiner nun vorgelegten Publikation zeigen konnte, führt dieser Prozess zu einer sehr homogenen Keramik mit sehr feiner Körnung. „Die mechanischen Eigenschaften sind dadurch deutlich verbessert“, bringt es Müller auf den Punkt. So ließ sich die Bruchzähigkeit von Zirkonoxid-Keramiken im Vergleich zu heute erhältlichen Implantaten mehr als verdoppeln. Zudem steigt auch die Festigkeit der Materialien um etwa 50 Prozent an.

Bislang haben die Jenaer Forscher und ihre spanischen Kollegen einfache Geometrien dieser neuen Materialien lediglich im Labormaßstab hergestellt. „Die Herstellung auch im großen Maßstab für praktische Anwendungen ist aber durchaus möglich“, ist Prof. Müller überzeugt.

Original-Publikation:
Bartolomé JF et al. New ZrO2/Al2O3 Nanocomposite Fabricated from Hybrid Nanoparticles Prepared by CO2 Laser Co-Vaporization, Scientific Reports 2016, DOI: 10.1038/srep20589

Kontakt:
Prof. Dr. Frank A. Müller
Otto-Schott-Institut für Materialforschung (OSIM) der Friedrich-Schiller-Universität Jena
Löbdergraben 32, 07743 Jena
Tel.: 03641 / 947750
E-Mail: frank.mueller[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de

Dr. Ute Schönfelder | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Ultraleichte und belastbare HighEnd-Kunststoffe ermöglichen den energieeffizienten Verkehr
19.10.2018 | Brandenburgische Technische Universität Cottbus-Senftenberg

nachricht Nanodiamanten als Photokatalysatoren
18.10.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf dem Weg zu maßgeschneiderten Naturstoffen

Biotechnologen entschlüsseln Struktur und Funktion von Docking Domänen bei der Biosynthese von Peptid-Wirkstoffen

Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine...

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Natürlich intelligent

19.10.2018 | Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ultraleichte und belastbare HighEnd-Kunststoffe ermöglichen den energieeffizienten Verkehr

19.10.2018 | Materialwissenschaften

IMMUNOQUANT: Bessere Krebstherapien als Ziel

19.10.2018 | Biowissenschaften Chemie

Raum für Bildung: Physik völlig schwerelos

19.10.2018 | Bildung Wissenschaft

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics