Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eisen sticht Edelmetall

12.06.2012
Eine Eisen-Aluminium-Verbindung könnte einen Palladium-Katalysator ersetzen und die Produktion von Kunststoffen billiger machen

Chemiker mögen keine Edelmetalle – zumindest wenn sie die teuren Materialien als Katalysatoren brauchen, um Reaktionen zu beschleunigen oder in eine gewünschte Richtung zu lenken. Und das ist oft der Fall, etwa bei einem wesentlichen Produktionsschritt von Polyethylen, das jede Plastiktüte leicht, flexibel und stabil macht.


Eine Alternative zum Edelmetall: Diesen Kristall einer Eisen-Alluminium-Verbindung verwendeten Max-Planck-Forscher, um einen wichtigen Syntheseschritt bei der Produktion des Kunststoffs Polyethylen zu katalysieren. Bisher nutzt die Industrie dafür ein palladiumhaltiges Material. © Raul Cardoso-Gil / MPI für Chemische Physik fester Stoffe

Ein Team um Forscher des Max-Planck-Instituts für Chemische Physik fester Stoffe in Dresden und des Fritz-Haber-Instituts der Max-Planck-Gesellschaft in Berlin hat dafür nun einen Reaktionsbeschleuniger aus Eisen und Aluminium entwickelt, der genauso gut wie der gängige Katalysator aus Palladium arbeitet, aber deutlich billiger ist. Identifiziert haben die Forscher die Alternative aus Eisen und Aluminium, indem sie zunächst systematisch klärten, welche Eigenschaften das Material aufweisen muss. Auf dieselbe Weise wollen sie künftig auch bei der Suche nach Katalysatoren für andere Reaktionen vorgehen.

Würde die chemische Industrie die Ausgangsstoffe von Polyethylen heute nicht routinemäßig über Palladium schicken, wären Plastiktüten ein einziges Ärgernis. Dann rissen die Tragetaschen nämlich schon, wenn sie nur ein paar Äpfel und eine Tüte Milch enthielten. Dass uns das erspart bleibt, verdanken wir der zuverlässigen Arbeit des Edelmetalls. Es verwandelt Ethin, das Chemiker auch Acetylen in Ethen, das auch als Ethylen bekannt ist und aus dem Polyethylen entsteht. Ethen enthält immer auch Spuren von Ethin, weil die beiden Substanzen aus Erdöl gewonnen werden und sich nicht einfach voneinander trennen lassen. Ethin stört die Reaktion von Ethen zu Polyethylen jedoch derart, dass ein schlechter Kunststoff entsteht, wenn das Ethin vorher nicht mithilfe des Palladiums zwei Wasserstoffatome angeheftet bekommt und so zum Ethen wird.

Bei 80 Millionen Tonnen Polyethylen, die weltweit jährlich produziert werden, addieren sich die Kosten für die Umwandlung von Ethin zu einer erklecklichen Summe. Sie könnten künftig jedoch deutlich sinken. Denn die Industrie kann jetzt möglicherweise auf den Palladium-Katalysator verzichten und stattdessen zu einer intermetallischen Verbindung aus Eisen und Aluminium greifen. Forscher des Dresdner Max-Planck-Instituts für Chemische Physik fester Stoffe, des Fritz-Haber-Instituts der Max-Planck-Gesellschaft in Berlin in Zusammenarbeit mit der Ludwig-Maximilians-Universität München und dem Forschungszentrums Jülich haben das Material als probaten Palladiumersatz identifiziert, der Ethin genauso effizient zu Ethen hydriert wie edelmetallhaltige Katalysatoren.

Das katalytisch aktive Material muss in winzigen, isolierten Zentren vorliegen

„Dass sich diese Verbindung dafür so gut eignet, haben wir nicht durch Versuch und Irrtum herausgefunden, sondern durch einen wissensbasierten Ansatz“, sagt Marc Armbrüster vom Dresdner Max-Planck-Institut. Wissensbasiert heißt: Die Forscher haben das Wissen ausgenutzt, wie die Reaktion am Palladium genau stattfindet. Daraus leiteten sie ab, worauf es bei dem Katalysator ankommt, und suchten nach diesen Kriterien ein geeignetes Material.

Den ersten Anhaltspunkt lieferte den Wissenschaftlern die seit längerem bekannte Tatsache, dass auch Palladium nur dann das gewünschte Produkt liefert, wenn es in möglichst kleinen aktive Zentren vorliegt, etwa in Form von einzelnen Palladiumatomen in einer inaktiven Silbermatrix. Andernfalls bleibt die Reaktion der Ethin-Moleküle nicht bei der Semihydrierung stehen. Das heißt, das Ethin nimmt nicht nur zwei, sondern vier Wasserstoffatome auf und wird zu Ethan, das für die Kettenreaktion zum Polyethylen völlig unbrauchbar ist. „Die Ethin-Moleküle lagern sich an die winzigen Palladium-Zentren offenbar zwangsläufig so an, dass sie selektiv nur zwei Wasserstoffatome aufnehmen können“, erklärt Marc Armbrüster. Feinverteiltes Palladium in einer Silber-Legierung ballt sich unter den Bedingungen der Reaktion jedoch allmählich zu größeren Aggregaten zusammen, und der Katalysator büßt zunehmend an Selektivität ein.

In einer intermetallischen Verbindung lassen sich die aktiven Zentren strikt trennen

Das brachte Juri Grin, Direktor am Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden und Robert Schlögl, Direktor am Fritz-Haber-Institut der Max-Planck-Gesellschaft in Berlin bei einer Diskussion um 2004 zunächst auf die Idee, die aktiven Zentren, nämlich die einzelnen Palladiumatome, in einem Kristallgitter zu fixieren. Auf diese Weise bündelten sie die Kernkompetenzen von zwei Max-Planck-Instituten – für Katalyse in Berlin und für intermetallische Verbindungen in Dresden – in den folgenden Jahren zur Lösung eines wichtigen praktischen Problems. Der erste Erfolg dieser Kooperation stellte sich umgehend ein. Denn bei der Suche nach einem geeigneten Reaktionsbeschleuniger für die Semihydrierung von Ethin erwies sich eine Verbindung aus Gallium und Palladium schnell als Material der Wahl.

Dass es sich um eine intermetallische Verbindung handelt, und nicht um eine Legierung, wie sie Metalle gerne bilden, ist dabei entscheidend. Unter anderem weil sich die beteiligten Metalle darin anders als in Legierungen nicht mehr oder weniger wahllos mischen, sondern hoch geordnete Kristallstrukturen bilden. Dadurch unterscheidet sich der atomare Aufbau einer intermetallischen Verbindung von der ihrer Komponenten in Reinform. Im Fall der Gallium-Palladium-Verbindung umgibt sich jedes Palladiumatom in der Kristallstruktur ausschließlich mit katalytisch inaktiven Galliumatomen. Die einzelnen katalytischen Zentren sind also strikt voneinander getrennt.

Der Ersatz für den Palladium-Katalysator muss eine ähnliche Struktur besitzen

Der Erfolg der Grundidee ermutigte die Forscher nun zum nächsten Schritt – zur Suche nach einem Material, das sich katalytisch wie die Gallium-Palladium-Verbindung verhält, aber kein Palladium enthält. Dass sie dabei auf die Verbindung Al13Fe4 verfielen, liegt an dessen Kristallstruktur. Denn darin halten die Aluminiumatome die Eisenatome genauso auf Abstand wie die Galliumatome die Palladiumatome im Gallium-Palladium-Katalysator.

Das alleine macht aber noch keinen brauchbaren Katalysator für die Ethin-Umwandlung. Dafür taugt eine Verbindung nur, wenn sie die Ethin-Moleküle in gleicher Weise umsetzt wie der palladiumhaltige Katalysator. Das wiederum hängt entscheidend davon ab, wie sich die Elektronen in dem Material verteilen, welche Energie sie besitzen und wie sie die Anbindung der Ethin-Moleküle beeinflussen. In diesen Punkten ähneln sich die Aluminium-Eisen- und die Gallium-Palladium-Verbindungen. Und tatsächlich vermittelt die Eisen-Aluminium-Verbindung ebenso zuverlässig genau zwei Wasserstoffatome an die Ethin-Moleküle wie der Palladium- Gallium-Katalysator.

Der Eisen-Aluminium-Katalysator könnte die Produktion vieler Kunststoffe verbilligen

Ehe die Industrie mit dem neuen Katalysator die Kosten der Polyethylen-Produktion senken kann, muss sich das Material noch in der großtechnischen Anwendung bewähren. Dann könnte der Katalysator auch bei der Produktion anderer Kunststoffe seine Qualität als selektiver Wasserstoffvermittler ausspielen.

Die Dresdner und Berliner Chemiker wollen unterdessen auch systematisch nach Katalysatoren für andere Reaktionen suchen. Eine wichtige Erkenntnis dieser Arbeit ist, dass der wissensbasierter Ansatz in der Katalyseforschung erfolgreich sein kann: Vielleicht führt das dazu, dass die chemische Industrie in ihren Reaktoren künftig einmal ganz ohne Edelmetalle auskommt. Viele Produkte für den alltäglichen Bedarf könnten dann billiger werden – und das würden nicht nur Chemiker mögen.

Ansprechpartner

Dr. Marc Armbrüster
Max-Planck-Institut für chemische Physik fester Stoffe
Telefon: +49 351 4646-2231
Email: marc.armbruester@­cpfs.mpg.de
Prof. Dr. Juri Grin
Max-Planck-Institut für chemische Physik fester Stoffe
Telefon: +49 351 4646-4000
Fax: +49 351 4646-4002
Email: grin@­cpfs.mpg.de
Prof. Dr. Robert Schlögl
Fritz-Haber-Institut der Max-Planck-Gesellschaft
Telefon: +49 30 8413-4400
Fax: +49 30 8413-4401
Email: acsek@­fhi-berlin.mpg.de
Dr. Liane Schröder
Max-Planck-Institut für chemische Physik fester Stoffe
Telefon: +49 351 4646-3602
Fax: +49 351 4646-10
Email: schroede@­cpfs.mpg.de

Originalveröffentlichung
Marc Armbrüster, Kirill Kovnir, Matthias Friedrich, Detre Teschner, Gregor Wowsnick, Michael Hahne, Peter Gille, Lászlo Szentmiklósi, Michael Feuerbacher, Marc Heggen, Frank Girgsdies, Dirk Rosenthal, Robert Schlögl und Yuri Grin
Al13Fe4 as a low-cost alternative for palladium in heterogeneous hydrogenation
Nature Materials, 10. Juni 2012; doi:10.1038/nmat3347

Dr. Liane Schröder | Max-Planck-Institut
Weitere Informationen:
http://www.cpfs.mpg.de
http://www.mpg.de/5837202/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Nanodiamanten als Photokatalysatoren
18.10.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht INNOVENT startet Innovatives Anwenderprojekt (INNAP) "Oberflächenbehandlung mit UVC-Licht"
18.10.2018 | INNOVENT e.V. Technologieentwicklung Jena

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Im Focus: Chemiker der Universitäten Rostock und Yale zeigen erstmals Dreierkette aus gleichgeladenen Ionen

Die Forschungskooperation zwischen der Universität Yale und der Universität Rostock hat neue wissenschaftliche Ergebnisse hervorgebracht. In der renommierten Zeitschrift „Angewandte Chemie“ berichten die Wissenschaftler über eine Dreierkette aus Ionen gleicher Ladung, die durch sogenannte Wasserstoffbrücken zusammengehalten werden. Damit zeigen die Forscher zum ersten Mal eine Dreierkette aus gleichgeladenen Ionen, die sich im Grunde abstoßen.

Die erfolgreiche Zusammenarbeit zwischen den Professoren Mark Johnson, einem weltbekannten Cluster-Forscher, und Ralf Ludwig aus der Physikalischen Chemie der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2018

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungsnachrichten

Datenspeicher der Zukunft: Extrem kleine magnetische Nanostrukturen mit Tarnkappen beobachtet

18.10.2018 | Physik Astronomie

Einblicke in das Tarnverhalten von Sepien

18.10.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics