DIN-Norm für Dickenmessung von Polymeren

Referenzfederbalken aus Silizium zur Bestimmung der Antastkraft von Tastschnittgeräten. Aus der Verbiegung des Balkens an einer Endmarke lässt sich die Antastkraft ermitteln. PTB

In Mikrosystemen werden metallische Bauteile zunehmend durch solche aus kostengünstigen Polymeren ersetzt. Für die Dickenmessung von Polymeren gibt es nun erstmals die DIN-Norm 32567, die Methoden zur präzisen Messung der Dicke von Polymerschichten beschreibt, sowohl für optische als auch für taktile Oberflächenmessverfahren.

Dies beinhaltet Verfahren, mit denen sowohl die Antastkraft als auch der Spitzenradius von Tastschnittgeräten gemessen werden kann – eine Grundvoraussetzung für zerstörungsfreie präzise taktile Profilmessungen.

Vom Bewegungssensor bis zum Smartphone – in vielen Produkten des täglichen Lebens sind zunehmend Bauteile aus Polymermaterialien enthalten. Die gewünschte Funktionsweise dieser Bauteile hängt neben den Abmessungen häufig auch von den mechanischen Eigenschaften dieser Polymermaterialien ab. Die Abmessungen lassen sich optisch oder taktil messen.

Allerdings treten bei der Dickenmessung transparenter Materialien mit optischen Messverfahren, aber auch bei der Tastschnittmessung weicher Schichten auf harten Substraten systematische Abweichungen auf. Bei taktilen Verfahren sind die wesentlichen Einflussfaktoren die Antastkraft und der Tastspitzenradius. Bei viskosen Materialien, deren mechanische Eigenschaften zeitabhängig sind, wirken sich auch unterschiedliche Messgeschwindigkeiten auf die Höhe der systematischen Abweichungen aus.

Die PTB hat daher in Zusammenarbeit mit anderen europäischen Metrologie-Instituten ein Verfahren zur Korrektur der systematischen Messabweichungen entwickelt, das in der Norm DIN 32567 standardisiert worden ist. In der Norm werden die wesentlichen Einflussfaktoren bei taktilen und optischen Messungen aufgezeigt und Methoden zur Abschätzung, Korrektur und Reduzierung der systematischen Abweichungen beschrieben.

Sie beschreibt anwenderfreundliche Verfahren, mit denen sowohl die Antastkraft, als auch der Tastspitzenradius mit Hilfe von Normalen bestimmt werden können.

Bei optischen Messgeräten sind die wesentlichen Einflussfaktoren die effektive numerische Apertur der verwendeten Optik, die Lage der Reflexionsebene bei volumenstreuenden Materialien und der Phasensprung bei Reflexion. Die Norm beschreibt für Weißlichtmikroskope und fokussierende Messsysteme Verfahren zur Bestimmung dieser Größen und Korrektur von systematischen Abweichungen auf der Basis neuer Normale.

Die Forschungsarbeiten fanden im Rahmen des internationalen MeProVisc-Projektes (Dynamic mechanical properties and long-term deformation behaviour of viscous materials) innerhalb des Europäischen Metrologieforschungsprogramms EMRP statt. Ergebnis des Projektes ist ein Vergleich von Kriechmessungen mit der dynamischen instrumentierten Eindringprüfung für viskose Materialien. Die Standardisierung dieser Verfahren ist im Teil 5 der ISO 14577 Norm zur Nanoindentation geplant.

Ansprechpartner
Dr. Uwe Brand, Arbeitsgruppe 5.11 Härte und taktile Antastverfahren, Telefon: 0531-592 5111,
E-Mail: uwe.brand@ptb.de

Weitere Informationen
• Brand, U.; Beckert, E.; Beutler, A.; Dai, G.; Stelzer, C.; Hertwig, A.; Klapetek, P.; Koglin, J.; Thelen, R. and Tutsch, R.: Comparison of optical and tactile layer thickness measurements of polymers and metals on silicon or SiO2. Meas. Sci. Technol. 22 (2011) 094021 (14pp)
• DIN 32567 Fertigungsmittel für Mikrosysteme — Ermittlung von Materialeinflüssen auf die Messunsicherheit in der optischen und taktilen dimensionellen Messtechnik. Teile 1 – 5
• Li, Z., Brand, U. und Ahbe, T.: Step height measurement of microscale thermoplastic polymer specimens using contact stylus profilometry. Prec. Eng. 45, 110–117 (2016)

http://www.ptb.de/cms/presseaktuelles/journalisten/presseinformationen/presseinf…

Media Contact

Imke Frischmuth Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer