Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Modellprojekt: Keramische Werkstoffe für die Biotechnologie

04.12.2000


Ein Forschungsteam der FH Gießen-Friedberg entwickelt aus keramischen Werkstoffen innovative Produkte für die Biotechnologie. Einsatzgebiete sind die pharmazeutische Forschung und Produktion sowie die
Lebensmitteltechnologie.

Das Modellprojekt "Biocera" wird von der Hessischen Technologiestiftung gefördert. Es hat ein Finanzvolumen von ca. 1,3 Millionen DM. Leiter des Projekts ist Prof. Dr. Peter Czermak vom Fachbereich Krankenhaus und Medizintechnik, Umwelt- und Biotechnologie. An dem Forschungsvorhaben sind Kooperationspartner aus der Industrie beteiligt.

Im alltäglichen Leben, auf verschiedenen Technikfeldern oder in der Medizin (etwa Implantate für Chirurgie und Zahnmedizin) haben keramische Produkte einen festen Platz. In der Biotechnologie dagegen finden Keramikhersteller bisher nur relativ schwer Zugang zum Markt. Das liegt u.a. am großen Aufwand und an den hohen Kosten der Entwicklungsprozesse. Gerade aber in der Biotechnologie, z.B. bei der Erforschung neuer Medikamente, besteht Bedarf für spezialisierte keramische Komponenten. Hochreine, bioverträgliche Werkstoffe können Fortschritte bringen bei der Anlage von Zellkulturen, die für die Gewinnung neuer pharmazeutischer Präparate in der Diagnostik und Therapie unverzichtbar sind.

"Biocera" will vor allem mittelständischen Unternehmen der keramischen Industrie den Weg zur Markteinführung von Produkten aufzeigen und die erforderlichen Entwicklungsschritte praxisgerecht ausarbeiten, so dass Firmen diesem Beispiel folgen können. Modellhaft an diesem interdisziplinären Forschungsprojekt ist die Kooperation der verschiedenen Sparten. Das wissenschaftliche Projektteam koordiniert Entwicklungsprozesse zwischen Keramikproduzenten und Biotechnologieunternehmen, um besonders auf dem Gebiet der Zellkulturtechnik neue Produkte zu realisieren.

Die Arbeiten an der FH Gießen-Friedberg laufen im Labor für Bioverfahrenstechnik und Membrantechnologie. Neben Prof. Dr. Czermak gehören Dipl.-Ing. Dirk Nehring und Barbara Boine zum Team. Dirk Nehring, der wissenschaftlicher Mitarbeiter des Projekts ist, löst damit zugleich eine von der Technischen Universität Hamburg-Harburg gestellte Promotionsaufgabe. Barbara Boine ist von der Technischen Universität Berlin an die FH nach Gießen gekommen, um eine praxisbezogene Studienphase zu absolvieren. Zur Verstärkung der Gruppe wird derzeit ein weiterer wissenschaftlicher Mitarbeiter gesucht. Ab sofort sollen darüber hinaus Diplomanden der FH Gießen-Friedberg eingebunden werden.

Das Projekt endet am 31. März des Jahres 2003. In der ersten Phase geht es darum, das Zusammenwirken bestimmter keramischer Werkstoffe mit biologischen Systemen grundlegend zu klären. Darauf basierend entwickelt ein Unternehmen keramische Körper gemäß dem ermittelten Anforderungsprofil. Diese Prototypen werden vom FH-Team im Labormaßstab getestet. Die Keramikprodukte können anhand der gewonnen Erkenntnisse permanent verbessert werden. Im Labor werden zudem Fermentations-Testreihen mit unterschiedlichen biologischen Produktionssystemen ausgeführt. Abschließend sollen die Entwicklungsresultate unter den Produktionsbedingungen der Praxis eingesetzt, die Marktreife nachgewiesen und die Zulassung beantragt werden.

Weitere Informationen finden Sie im WWW:

Erhard Jakobs | idw

Weitere Berichte zu: Biotechnologie Keramisch Modellprojekt

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Neues Material mit magnetischem Formgedächtnis
04.06.2019 | Paul Scherrer Institut (PSI)

nachricht Weltraumschrott verringern: HZG-Wissenschaftler helfen beim Sauberhalten
30.05.2019 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD-Team entdeckt lichtinduzierte Ferroelektrizität in Strontiumtitanat

Mit Licht lassen sich Materialeigenschaften nicht nur messen, sondern auch verändern. Besonders interessant sind dabei Fälle, in denen eine fundamentale Eigenschaft eines Materials verändert werden kann, wie z.B. die Fähigkeit, Strom zu leiten oder Informationen in einem magnetischen Zustand zu speichern. Ein Team um Andrea Cavalleri vom Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg, hat nun Lichtimpulse aus dem Terahertz-Frequenzspektrum benutzt, um ein nicht-ferroelektrisches Material in ein ferroelektrisches umzuwandeln.

Ferroelektrizität ist ein Zustand, in dem die Atome im Kristallgitter eine bestimmte Richtung "aufzeigen" und dadurch eine makroskopische elektrische...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Konzert der magnetischen Momente

Forscher aus Deutschland, den Niederlanden und Südkorea haben in einer internationalen Zusammenarbeit einen neuartigen Weg entdeckt, wie die Elektronenspins in einem Material miteinander agieren. In ihrer Publikation in der Fachzeitschrift Nature Materials berichten die Forscher über eine bisher unbekannte, chirale Kopplung, die über vergleichsweise lange Distanzen aktiv ist. Damit können sich die Spins in zwei unterschiedlichen magnetischen Lagen, die durch nicht-magnetische Materialien voneinander getrennt sind, gegenseitig beeinflussen, selbst wenn sie nicht unmittelbar benachbart sind.

Magnetische Festkörper sind die Grundlage der modernen Informationstechnologie. Beispielsweise sind diese Materialien allgegenwärtig in Speichermedien wie...

Im Focus: Schwerefeldbestimmung der Erde so genau wie noch nie

Forschende der TU Graz berechneten aus 1,16 Milliarden Satellitendaten das bislang genaueste Schwerefeldmodell der Erde. Es liefert wertvolles Wissen für die Klimaforschung.

Die Erdanziehungskraft schwankt von Ort zu Ort. Dieses Phänomen nutzen Geodäsie-Fachleute, um geodynamische und klimatologische Prozesse zu beobachten....

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Doc Data – warum Daten Leben retten können

14.06.2019 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - August 2019

13.06.2019 | Veranstaltungen

Künstliche Intelligenz in der Materialmikroskopie

13.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

German Innovation Award für Rittal VX25 Schaltschranksystem

14.06.2019 | Förderungen Preise

Fraunhofer SCAI und Uni Bonn zeigen innovative Anwendungen und Software für das High Performance Computing

14.06.2019 | Messenachrichten

Autonomes Premiumtaxi sofort oder warten auf den selbstfahrenden Minibus?

14.06.2019 | Interdisziplinäre Forschung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics