Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Augsburger Nanobeben auf kalifornischem Molybdänit

28.10.2015

Forscher der Universität Augsburg und der University of California at Riverside detektieren und transportieren mit akustischen Oberflächenwellen elektrische Ladungen in zweidimensionalen Kristallen

Ein bayerisch-kalifornisches Team von Forschern der Universität Augsburg und der University of California in Riverside haben ein neuartiges hybrides Bauelement entwickelt, das es erlaubt, Eigenschaften und Geheimnisse sogenannter zweidimensionaler Kristalle zu entschlüsseln.


Edwin Preciado von der UC Riverside (rechts) und sein Augsburger Kollege Sebastian Hammer im Reinraum

© Ludwig Bartels & Hubert Krenner

Bis hin zu drahtlos abfragbaren Chips reicht das Anwendungspotential der entwickelten und experimentell erprobten Methode, elektrische Ladungen in solchen Materialen mit akustischen Oberflächenwellen zu detektieren und zu transportieren.

Unter zweidimensionalen Kristallen versteht man Materialien mit einer minimalen Zahl von Atomlagen. Wegen ihrer besonderen Eigenschaften werden 2D-Kristalle als Schlüsselmaterialen für elektronische Bauelemente der Nach-Silizium-Ära weltweit untersucht.

In der aktuellen Ausgabe der Fachzeitschrift "Nature Communications" berichten Forscher der Universität Augsburg und der UC Riverside nun, wie sie mit Hilfe akustischer Oberflächenwellen in ultradünnen 2D-Kristallen elektrische Ladungen nicht nur nachweisen, sondern auch gezielt wie auf einem Förderband transportieren können.

Als zweidimensionale Kristalle verwendete das bayerisch-kalifornische Forscherteam speziell für diesen Zweck an der UC Riverside hergestelltes Molybdänit, ein neuartiges Paradematerial aus der Klasse der Übergangsmetalldichalkogenide, das sie dann mit der in Augsburg seit vielen Jahren perfekt beherrschten und in vielen Bereichen der Nanowissenschaften eingesetzten Nanobeben-Methode studiert haben - und zwar mit einem wegweisenden Ergebnis:

"Wir sind nun in der Lage, elektrische Ladungen, die von einem winzigen Laserstrahl in einer nur drei Atomlagen dicken Molybdänitschicht erzeugt werden, aus einer Entfernung von mehreren Millimetern direkt auf einem Chip zu detektieren – und das ohne jede elektrische Zuleitung", berichtet Prof. Dr. Hubert Krenner.

Akustische Oberflächenwellen – Surface Acoustic Waves, kurz: SAWs – werden heute schon in Mobiltelefonen und anderen drahtlosen Kommunikationssystemen, aber auch in der Sensorik und in der Biomedizin im großen Maßstab eingesetzt. "Vor diesem Hintergrund", so Krenner, "sehen wir in unserer neuen SAW-Methode, elektrische Ladung in Molybdänit-2D-Kristallen zu erkennen und zu transportieren, ein extrem hohes Anwendungspotential der neuartigen Hybride bis hin zu drahtlosen, über Funk abfragbaren Chips."

Das Projekt, das diese Perspektiven jetzt eröffnet, wurde über den Atlantik hinweg von Florian Schülein, Absolvent des Augsburger Lehrstuhls für Experimentalphysik I, und Edwin Preciado, Doktorand bei Professor Ludwig Bartels in Riverside, bearbeitet.

„Bei unseren gemeinsamen Forschungen", so Bartels, "haben wir sehr von unseren komplementären Expertisen profitiert. Deren einzigartige Verknüpfung beim Studium von 2D-Kristallen eröffnet uns jetzt völlig neue Perspektiven sowohl für praktische Anwendungen als auch in der Grundlagenforschung.“

Die 2D-Kristalle wurden in Kalifornien hergestellt, in Augsburg wurden sie dann zu hybriden Bauelementen weiterverarbeitet und experimentell untersucht. Dazu Krenner: „Es war faszinierend zu sehen, mit wieviel Motivation und Geschick Preciado und Schülein das kalifornische Molybdänit und die bayerischen SAWs in unseren Laboren in Windeseile verbunden und dabei transatlantische Spitzenforschung mit diesem zukunftsträchtigen Ergebnis vorangetrieben haben."

Krenner ist mit seiner jungen Arbeitsgruppe am Lehrstuhl für Experimentalphysik I der Universität Augsburg angesiedelt. Prof. Dr. Achim Wixforth, der Inhaber dieses auch in den Exzellencluster "Nanosystems Initiative Munich" (NIM) eingebundenen Augsburger Lehrstuhls, gilt international als Pionier auf dem Feld der akustischen Oberflächenwellen.

„Die Zusammenarbeit mit der Augsburger SAW-Spitzenforschung war entscheidend für unseren gemeinsamen Erfolg", betont Preciado und fügt hinzu, dass er während seines mehrmonatigen Aufenthalts in Augsburg sehr viel gelernt habe: "Ich konnte viele Erfahrungen sammeln und neue Kompetenzen entwickeln. Diese Möglichkeiten wären mir in den USA so nicht geboten worden.“

Die Fortsetzung der erfolgreichen Augsburg-Riverside-Zusammenarbeit ist bereits auf bestem Weg: Sebastian Hammer, wie Florian Schülein Student von Krenner und Wixforth, war bereits zum Gegenbesuch in Riverside, um neue Proben für faszinierende Experimente mit spektakulären Ergebnissen herzustellen.

Das Projekt wurde vom Bayerisch-Kalifornischen Technologiezentrum (BaCaTeC) anschubfinanziert. Es wurde darüber hinaus in Deutschland im Rahmen der Exzellenzinitiative durch den Exzellenzcluster "Nanosystems Initiative Munich" (NIM) und die Deutsche Forschungsgemeinschaft (DFG) im Rahmen des Emmy Noether Programms unterstützt. In den USA wurde es von C-SPIN, einem STARnet Center der Semiconductor Research Cooperation und der National Science Foundation (NSF) gefördert.

Publikation:

Edwin Preciado, Florian J.R. Schülein, Ariana E. Nguyen, David Barroso, Miguel Isarraraz, Gretel von Son, I-Hsi Lu, Wladislaw Michailow, Benjamin Möller, Velveth Klee, John Mann, Achim Wixforth,
Ludwig Bartels, Hubert J. Krenner: Scalable fabrication of a hybrid field-effect and acousto-electric device by direct growth of monolayer MoS2/LiNbO3; Nature Communications 6, 8593; doi:10.1038/ncomms9593 (2015), http://dx.doi.org/10.1038/ncomms9593

Ansprechpartner:

Prof. Dr. Hubert Krenner
hubert.krenner@physik.uni-augsburg.de
Telefon +49(0)821-598-3308
http://www.physik.uni-augsburg.de/de/lehrstuehle/exp1/emmynoether/

Prof. Dr. Achim Wixforth
achim.wixforth@physik.uni-augsburg.de
Telefon +49(0)821-598-3300
http://www.physik.uni-augsburg.de/de/lehrstuehle/exp1/

Lehrstuhl für Experimentalphysik I
Universität Augsburg
Universitätsstraße 1
86159 Augsburg

Weitere Informationen:

http://dx.doi.org/10.1038/ncomms9593

Klaus P. Prem | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Ultraleichte und belastbare HighEnd-Kunststoffe ermöglichen den energieeffizienten Verkehr
19.10.2018 | Brandenburgische Technische Universität Cottbus-Senftenberg

nachricht Nanodiamanten als Photokatalysatoren
18.10.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf dem Weg zu maßgeschneiderten Naturstoffen

Biotechnologen entschlüsseln Struktur und Funktion von Docking Domänen bei der Biosynthese von Peptid-Wirkstoffen

Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine...

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Natürlich intelligent

19.10.2018 | Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ultraleichte und belastbare HighEnd-Kunststoffe ermöglichen den energieeffizienten Verkehr

19.10.2018 | Materialwissenschaften

IMMUNOQUANT: Bessere Krebstherapien als Ziel

19.10.2018 | Biowissenschaften Chemie

Raum für Bildung: Physik völlig schwerelos

19.10.2018 | Bildung Wissenschaft

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics