Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laser meets Textiltechnik – Mit Ultrakurzpulslaser und Roboter zur schnelleren CFK-Fertigung

30.01.2020

Die Montage von CFK-Bauteilen erfolgt in der Regel unter Verwendung von Verbindungselementen, die in das ausgehärtete und anschließend gebohrte CFK-Bauteil eingeklebt werden. Einen neuen Weg ging das Konsortium des Projekts CarboLase: Mit einem Ultrakurzpulslaser werden bereits in den textilen Preform mikrometergenaue Löcher gebohrt und dieser mit Verbindungselementen versehen. Anschließend wird das CFK-Bauteil ausgehärtet – das spart Zeit! Dafür wurde das Team 2019 mit dem renommierten CAMX-Award in der Kategorie »Combined Strength« ausgezeichnet.

Faserverbund-Kunststoffe (FVK) sind die Alleskönner unter den Konstruktionswerkstoffen. Sie vereinen die positiven mechanischen Eigenschaften ihrer Ausgangsmaterialien – hochfeste Fasern und eine robuste Kunststoff-Matrix – zu einem Verbund mit hohen Festig- und Steifigkeiten bei geringer Dichte.


Ein mit dem UKP-Laserstrahl gebohrter Carbonfaser-Preform mit sternförmiger Formbohrung und passgenauem Metallinsert.

© Fraunhofer ILT, Aachen

Doch wieso haben sich FVK in Zeiten wachsender Bedeutung von Energie- und Ressourceneffizienz noch nicht vollständig durchgesetzt? Noch ist die Herstellung teuer. Zudem sind die Bauteile meist schwierig zu be- und verarbeiten.

Projekt CarboLase: neue Generation der FVK-Bauteilfertigung

Im März 2017 startete das Fraunhofer-Institut für Lasertechnik ILT gemeinsam mit vier Projektpartnern aus Forschung und Industrie das Projekt »CarboLase – Hochproduktive, automatisierte und maßgeschneiderte Just-in-Time FVK-Bauteilfertigung«.

Der Europäische Fonds für regionale Entwicklung (EFRE) förderte das Projekt mit dem Ziel, die Technologieführerschaft der beteiligten KMUs aus NRW und die langfristige nationale und internationale Wettbewerbsfähigkeit zu steigern. Dieses wurde erreicht, indem die Prozesskette der FVK-Herstellung vereinfacht und die Kosten reduziert wurden.

Normalerweise werden zur Montage von carbonfaserverstärkten Kunststoff-Elementen (CFK) in konventionelle Bauteile Löcher in die fertigen CFK-Module gebohrt und in diese wiederum metallische Verbindungselemente – z. B. Inserts mit Innengewinden – eingeklebt. Damit Bauteile durch Leichtbauelemente ersetzt werden können, müssen die Verbindungen zwischen FVK- und konventionellem Bauteil lösbar und sicher sein.

Im CarboLase-Projekt wurde ein anderer Denkansatz verfolgt: Hier integrieren die Experten die Verbindungselemente bereits in die textilen Vorformlinge, die sog. Preforms. Erst danach wird durch ein gemeinsames Aushärten das finale CFK-Bauteil geschaffen. Dadurch können Fertigungsprozessketten deutlich verkürzt werden. Allerdings sind für diese Fertigungsart hochpräzise Aussparungen im Textil erforderlich.

Preisgekrönte Dreiercombo – CAMX-Award für CarboLase-Partner

Ein Trio aus CNC-Zuschnitt, Laserbearbeitung und automatischem Handling ist die Lösung für eine FVK-Bauteilfertigung, die allen Ansprüchen gerecht wird. Die Technologien der einzelnen Prozessschritte werden in eine Roboterzelle integriert und die dazwischenliegenden Teilprozesse automatisiert. Zuerst wird der Preform durch Zuschneiden, Stapeln und Fügen der Textilien hergestellt. Anschließend werden mit einem Ultrakurzpulslaser (UKP-Laser) passgenaue Aussparungen in die Preforms gebohrt und in diese die metallischen Inserts eingebracht.

Damit der UKP-Laser eine erfolgreiche Alternative für die konventionelle Fertigung ist, bedarf es der Integration des Lasers in die Roboterzelle. Klassisch werden ultrakurze Pulse über Spiegel geleitet, was an einem Roboterarm aber kaum möglich ist. Daher haben die Experten des Fraunhofer ILT gemeinsam mit denen der AMPHOS GmbH eine neuartige Systemtechnik zur Ein- und Auskopplung der UKP-Laserstrahlung entwickelt. Die Verbindung der UKP-Laserstrahlquelle mit dem Scanner am Roboter wird über eine Hohlkernfaser (hollow core) realisiert.

Auf der »Composites and Advanced Materials Expo« in Anaheim, Kalifornien, USA, gewann das CarboLase-Konsortium am 26. September 2019 den renommierten CAMX-Award in der Kategorie »Combined Strength«. Mit den CAMX-Awards werden Innovationen ausgezeichnet, die einen erheblichen Einfluss auf den Bereich der Verbundwerkstoffe haben werden. Ausschlaggebend für die Auszeichnung war die Integration des Lasers an den Anfang der Prozesskette und die damit einhergehende Reduktion an zeit- und kostenintensiven Folgeprozessschritten.

Erfolgreich umgesetzt

Das entwickelte Verfahren wurde bereits erfolgreich erprobt und die technische Machbarkeit bewiesen: Die Projektpartner fertigten dabei einen Demonstrator für ein B-Säulenelement, der anschließend einer gründlichen mechanischen Prüfung unterzogen wurde. Sowohl in Auszug- als auch in den Torsionsversuchen schnitten die mit dem CarboLase-Verfahren gefertigten Fügestellen besser ab als die von konventionell gefertigten Faserverbundbauteilen. Die formschlüssig mit dem Matrixwerkstoff verbundenen Inserts erzielen eine um bis zu 50 Prozent höhere maximale Auszugkraft gegenüber konventionell gefertigten Bauteilen mit eingeklebten Inserts. Durch die erhöhten mechanischen Kennwerte kann je nach Bauteildesign die Gesamtdicke und damit das Gesamtgewicht reduziert werden.

Der Prozess bietet große Designfreiheit: Die Verbindungsstellen lassen sich in ihrer Lage und Größe beliebig festgelegen. Roboter und Scanner können sich deutlich freier auf der Meter- und Mikrometerebene bewegen als statische mechanische Bearbeitungszentren. Eine effiziente Mass Customization der CFK-Bauteile ist damit über den Stand der Technik hinaus möglich. Das dynamische UKP-Laserbohrverfahren ist insbesondere für Leichtbauteile aus dem Luftfahrt- und dem Automobilbereich interessant und kann einen Beitrag zu Material- und Kosteneinsparungen bei der Herstellung von CFK-Bauteile leisten.

Forschung mit Blick auf die Industrie

Im Bereich der UKP-Lasertechnik kooperierte das Fraunhofer ILT in CarboLase mit der AMPHOS GmbH. Die LUNOVU GmbH begleitete als Systemintegrator die Vernetzung einzelner Prozessschritte und realisierte die Integration der Sensorik in die Roboterzelle am Institut für Textiltechnik (ITA) an der RWTH Aachen University. KOHLHAGE Fasteners GmbH & Co. KG erarbeitete die automatisierte Bereitstellung und Integration der Krafteinleitungselemente und das ITA übernahm schließlich die Umsetzung der automatisierten Prozesskette zur Herstellung der laserbearbeiteten Preforms. Das Projekt wurde vom Europäischen Fonds für regionale Entwicklung (EFRE) mit rund zwei Millionen Euro über eine Laufzeit von 2,5 Jahren gefördert.

Die Ergebnisse des CarboLase-Projekts werden auf der JEC World 2020 vom 3. bis 5. März 2020 in Paris auf dem AZL-Gemeinschaftsstand (Halle 5A, Stand L97) gezeigt.

Wissenschaftliche Ansprechpartner:

Dr.-Ing. Stefan Janssen
Telefon +49 241 8906-8076
stefan.janssen@ilt.fraunhofer.de

Dipl.-Phys. Martin Reininghaus
Telefon +49 241 8906-627
martin.reininghaus@ilt.fraunhofer.de

Dr.-Ing. Sebastian Oppitz
Telefon +49 241 80-22096
sebastian.oppitz@ita.rwth-aachen.de

Weitere Informationen:

http://www.ilt.fraunhofer.de

Petra Nolis M.A. | Fraunhofer-Institut für Lasertechnik ILT

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Innovatives Konzept für den effizienteren 3D-Druck
13.02.2020 | Technische Hochschule Nürnberg Georg Simon Ohm

nachricht Additiv gefertigtes Raketentriebwerk mit Aerospike-Düse für »Microlauncher«
12.02.2020 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lichtpulse bewegen Spins von Atom zu Atom

Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzpulsspektroskopie (MBI) und des Max-Planck-Instituts für Mikrostrukturphysik haben durch die Kombination von Experiment und Theorie die Frage gelöst, wie Laserpulse die Magnetisierung durch ultraschnellen Elektronentransfer zwischen verschiedenen Atomen manipulieren können.

Wenige nanometerdünne Filme aus magnetischen Materialien sind ideale Testobjekte, um grundlegende Fragestellungen des Magnetismus zu untersuchen. Darüber...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erste Untersuchungsergebnisse zum "Sensations-Meteoritenfall" von Flensburg

17.02.2020 | Geowissenschaften

Lichtpulse bewegen Spins von Atom zu Atom

17.02.2020 | Physik Astronomie

Freiburger Forscher untersucht Ursprünge der Beschaffenheit von Oberflächen

17.02.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics