Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zelluläres Kräftemessen

29.09.2016

Biologische Zellen können sich ausdehnen und zusammenziehen und mit Nachbarzellen wechselwirken. Wo dabei welche Kräfte wirken, können ETH-Forscher dank einer verbesserten Mikroskopiemethode einfacher und genauer bestimmen. Die Technik wird beispielsweise in der Krebsforschung verwendet.

Ein interdisziplinäres Team von Wissenschaftlern der ETH Zürich hat eine neue Mikroskopietechnik entwickelt. Damit können die Forschenden sehr detailliert Kräfte messen, welche biologische Zellen aufbringen, wenn diese wachsen, ihre Form ändern oder sich fortbewegen. Bei der neuen Methode handelt es sich um eine Weiterentwicklung der Traktionskraftmikroskopie (engl. traction force microscopy, TFM). Damit können Forscher diese Zellkräfte einfacher und höher aufgelöst messen als mit bisherigen Verfahren.


Mikroskopiebild eines roten Fluoreszenzgitters und einer Zelle, deren Wechselwirkung mit der Unterlage grün sichtbar ist (links oben). Rechts und unten: dasselbe Bild in anderen Farbe.

ETH Zürich / Martin Bergert

Elastische Unterlage

«Die heute gängigsten Ausführungen der Traktionskraftmikroskopie nutzen eine elastisch verformbare Unterlage und darin eingelassene mikroskopisch kleine fluoreszierende Referenzpunkte», erklärt Dimos Poulikakos, Professor für Thermodynamik und Leiter des Forschungsprojekts. Auf diesen Unterlagen können Wissenschaftler im Laborexperiment Zellen wachsen lassen. Wenn sich diese zum Beispiel nach der Gabe eines Botenstoffs verformen, wird die Unterlage ebenfalls verformt, sodass sich die Referenzpunkte verschieben.

In diesem Zustand fotografieren die Wissenschaftler Zellen und Referenzpunktteppich unter dem Mikroskop ein erstes Mal. Schliesslich entfernen sie die Zellen, worauf sich die Unterlage in die Ursprungsform zurückzieht. Die Forschenden fotografieren dann den elastischen Teppich ein zweites Mal. Beim Vergleichen der Punktmuster auf den beiden Fotos können sie computerunterstützt für jeden Punkt der Zelle bestimmen, um welche Distanz er die elastische Unterlage zu verschieben vermochte. Weil auch die physikalischen Eigenschaften der Unterlage bekannt sind, kann man die dort wirkenden Kräfte bestimmen.

Regelmässiges Muster

In bisherigen TFM-Ausführungen wurden die fluoreszierenden Referenzpunkte zufällig in das Unterlagenmaterial eingelassen. Den Forschern um Poulikakos ist es nun erstmals gelungen, diese Punkte in einem regelmässigen Gittermuster auf einer Silikon-Unterlage gezielt anzuordnen. Sie nutzten dazu Nanodrip, eine vor wenigen Jahren im Labor von ETH-Professor Poulikakos entwickelte 3D-Nanodrucktechnik.

Die regelmässige und klar definierte Anordnung der Orientierungspunkte bringt Vorteile. «Wir müssen nun nicht mehr Zellen entfernen und ein Vorher- mit einem Nachher-Bild vergleichen. Stattdessen können wir die Kräfte mit einem einzigen Mikroskopiebild bestimmen», sagt Aldo Ferrari, Oberassistent in Poulikakos Gruppe. Somit können die Wissenschaftler Zellen neu über eine längere Zeit beobachten und zum Beispiel zu verschiedenen Zeitpunkten mehrmals messen, wie Botenstoffe die Kräfte einer Zelle beeinflussen.

Zusammenarbeit mehrerer Forschungsgruppen

Die technische Weiterentwicklung war möglich dank der engen Zusammenarbeit von zahlreichen ETH-Forschern: So bestimmte das Labor von ETH-Professor Edoardo Mazza die physikalischen Eigenschaften der Silikon-Unterlage und entwickelte numerische Modelle, die es ermöglichen, aus der Deformation der Unterlage die verursachenden Kräfte genau zu berechnen. ETH-Professorin Olga Sorkine-Hornung und Daniele Panozzo, Professor an der New York University, trugen zur computergestützten Berechnung der effektiven Verschiebung der Punkte aus den Mikroskopiebildern bei.
Ausserdem verwendeten die Wissenschaftler als Fluoreszenzfarbstoffe für das Orientierungsgitter blau, grün oder rot leuchtende Quantenpunkte (engl. quantum dots), dies in Zusammenarbeit der Gruppe von ETH-Professor und Quantenpunkt-Experte David Norris. Quantenpunkte sind Nanostrukturen aus Halbleitermaterialien mit massgeschneiderter Geometrie.

Genauer und in 3D

Die neue Methode hat noch weitere Vorteile: Sie ist genauer als bisherige Methoden. Auch ist es erstmals möglich, die Traktionskraftmikroskopie (und somit zelluläre Kraftmessungen) mit der Immunhistochemie zu kombinieren. Letzteres ist eine verbreitete zellbiologische Methode, bei der bestimmte Zellkomponenten mit fluoreszierenden Antikörpern sichtbargemacht werden. «Wir können damit in einem Mikroskopiebild gleichzeitig das Vorhandensein eines bestimmten Proteins und die wirkenden Kräfte anzeigen und dabei Zusammenhänge erkennen», sagt Ferrari. «Das ermöglicht eine neue Art von zellbiologischen Experimenten.»

Und schliesslich ist es dank der Weiterentwicklung auch erstmals möglich, Kräfte in Zellen nicht nur zweidimensional, sondern dreidimensional zu bestimmen. «Wir verwenden die Konfokalmikroskopie. Damit können wir von der Silikon-Unterlage und von der Zelle Schicht für Schicht mehrere Bilder aufnehmen und diese rechnergestützt zu einem 3D-Bild zusammensetzen», sagt Ferrari.

Anwendung in der Krebsforschung

«Das neue System ist einfach zu brauchen und bereit für Anwendungen», sagt Poulikakos. Die entwickelte Software ist quelloffen: Die ETH-Forschenden stellen sie Kollegen kostenlos zur Verfügung. Interessierte Wissenschaftler müssen im Labor allerdings die Nanodrucktechnologie anwenden können, um Quantenpunkt-Silikon-Unterlagen herzustellen.

Eingesetzt werden kann das neue System in der zellbiologischen und biomedizinischen Forschung, etwa zum Studium von Bewegungsabläufen von Zellen oder für Messungen von Wechselwirkungen zwischen Zellen und Implantaten. So pflegt Poulikakos‘ Gruppe beispielsweise eine Zusammenarbeit mit Krebsforschern des Politecnico di Milano. Dabei untersuchen sie in einer Karzinom-Art wie die Aktivität einzelner Gene und die Beweglichkeit von Zellen im Gewebe sowie die dabei wirkenden Kräfte zusammenhängen.

Literaturhinweis

Bergert M et al.: Confocal reference free traction force microscopy, Nature Communications 2016, doi: 10.1038/ncomms12814 [http://dx.doi.org/10.1038/ncomms12814]

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2016/09/zellulaere...

Hochschulkommunikation | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Hightech für Natur
03.04.2020 | Museum für Naturkunde - Leibniz-Institut für Evolutions- und Biodiversitätsforschung

nachricht Biobasierte Leichtbau-Sandwich-Strukturen für Rotorblätter
02.04.2020 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Den Regen für Hydrovoltaik nutzen

Wassertropfen, die auf Oberflächen fallen oder über sie gleiten, können Spuren elektrischer Ladung hinterlassen, so dass sich die Tropfen selbst aufladen. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben dieses Phänomen, das uns auch in unserem Alltag begleitet, nun detailliert untersucht. Sie entwickelten eine Methode zur Quantifizierung der Ladungserzeugung und entwickelten zusätzlich ein theoretisches Modell zum besseren Verständnis. Nach Ansicht der Wissenschaftler könnte der beobachtete Effekt eine Möglichkeit zur Energieerzeugung und ein wichtiger Baustein zum Verständnis der Reibungselektrizität sein.

Wassertropfen, die über nicht leitende Oberflächen gleiten, sind überall in unserem Leben zu finden: Vom Tropfen einer Kaffeemaschine über eine Dusche bis hin...

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: Quantenimaging: Unsichtbares sichtbar machen

Verschränkte Lichtteilchen lassen sich nutzen, um Bildgebungs- und Messverfahren zu verbessern. Ein Forscherteam am Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF in Jena hat eine Quantenimaging-Lösung entwickelt, die in extremen Spektralbereichen und mit weniger Licht genaueste Einblicke in Gewebeproben ermöglichen kann.

Optische Analyseverfahren wie Mikroskopie und Spektroskopie sind in sichtbaren Wellenlängenbereichen schon äußerst effizient. Doch im Infrarot- oder...

Im Focus: Sensationsfund: Spuren eines Regenwaldes in der Westantarktis

90 Millionen Jahre alter Waldboden belegt unerwartet warmes Südpol-Klima in der Kreidezeit

Ein internationales Forscherteam unter Leitung von Geowissenschaftlern des Alfred-Wegener-Institutes, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI)...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

Europäischer Rheumatologenkongress EULAR 2020 wird zum Online-Kongress

30.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erste SARS-CoV-2-Genome aus Österreich veröffentlicht

03.04.2020 | Biowissenschaften Chemie

Projekt »Lade-PV« gestartet: Fahrzeugintegrierte PV für Elektro-Nutzfahrzeuge

03.04.2020 | Energie und Elektrotechnik

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics