Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Transistoren im Terahertz-Takt beeinflussen

18.11.2015

Ein interdisziplinäres Team der Ruhr-Universität Bochum hat einen neuen Zugang zum Inneren von Transistoren gefunden. Die Forscherinnen und Forscher beeinflussten das enthaltene Elektronengas, indem sie mithilfe von Resonatoren rhythmische Schwingungen im Terahertz-Bereich darin erzeugten. Die Ergebnisse berichten sie in der Zeitschrift „Scientific Reports“.

Transistoren lassen sich nicht nur mit Spannungen beeinflussen

Transistoren sind wesentliche Elemente der modernen Elektronik, die zum Schalten und Verstärken genutzt werden. Legt man von außen eine bestimmte Spannung an einen Transistor an, steuert das in seinem Inneren einen Strom, der wiederum eine neue Spannung ergibt.

Verglichen mit der außen angelegten Spannung kann die neue Spannung verstärkt sein, oszillieren oder logisch mit ihr verknüpft sein. Um über Strom und Spannung mit der Umgebung interagieren zu können, beinhalten Transistoren extrem dünne Elektronenschichten, sogenannte 2D-Elektronengase. Das RUB-Team zeigte, dass diese sich nicht nur durch Gleich- oder Radiofrequenzspannungen steuern lassen.

Elektronengas kann wie Wackelpudding zum Schwingen gebracht werden

„Ein 2D-Elektronengas ist wie ein Wackelpudding“, erklärt Prof. Dr. Andreas Wieck vom Lehrstuhl für Angewandte Festkörperphysik. „Drückt man mit einer charakteristischen Frequenz elektrisch von oben auf das Gas, entstehen Dicke- und Dichteschwingungen.“

Das Gas lässt sich also auch über elektrische Kräfte beeinflussen, die weit schneller variieren als jede Radio- oder Mikrowellenfrequenz. Da es gerade einmal zehn Nanometer dick ist, gehorchen die Schwingungen den Gesetzen der Quantenmechanik. Das bedeutet: Es können nur Schwingungen mit bestimmten Frequenzen entstehen, und zwar im Terahertz-Bereich, also im Bereich von 10^12 Hertz.

„Man muss sehr schnell auf das Elektronengas drücken“, veranschaulicht Wieck. Andreas Wieck, Dr. Shovon Pal Dr. Natham Jukam und weitere Kollegen der Arbeitsgruppe Terahertz-Spektroskopie und -Technologie sowie vom Lehrstuhl für Werkstoffe und Nanoelektronik fanden einen Weg, die erforderlichen Schwingungen auszulösen. So ergibt sich ein neuer Zugang zum Inneren eines Transistors.

Resonatoren erzeugen Dickeschwingungen

Die RUB-Forscher dampften 100 Nanometer über dem Elektronengas eine Vielzahl gleichartiger metallischer Resonatoren auf, die mit der erforderlichen festen Frequenz schwingen können. Das Elektronengas befand sich in einem Halbleiter und konnte über eine äußere Gleichspannung verändert werden, nämlich ein wenig dicker oder dünner gemacht werden.

Die Dicke bestimmt die Frequenz, die das Gas optimal zum Schwingen bringt. Über die äußere Spannung konnten die Forscher das Elektronengas auf die Resonatoren abstimmen, das Gas also so einstellen, dass der elektrische Wechseldruck der Resonatoren es optimal zum Schwingen im Terahertz-Bereich anregt.

Sensoren für die Chemie- und Umwelttechnik

Diese Technik könnte für Sensoren in der Chemie- und Umwelttechnik interessant sein, schlagen die Forscher vor. Denn Molekülschwingungen liegen typischerweise im Terahertz-Bereich. Über die modifizierten Transistoren ließen sich solche Schwingungen erfassen und Messfühler entwickeln, die individuell auf die Frequenzen bestimmter Gase oder Flüssigkeiten reagieren.

Förderung

Die Studie wurde finanziell gefördert durch das Bundesministerium für Bildung und Forschung, die Mercator-Stiftung, die Deutsch-Französische Hochschule Nice-Bochum, die RUB Research School, die International Max Planck Research School for Surface and Interface Engineering in Advanced Materials sowie durch die Deutsche Forschungsgemeinschaft.

Titelaufnahme

Pal et al. (2015): Ultrawide electrical tuning of light matter interaction in a high electron mobility transistor structure, Scientific Reports, DOI: 10.1038/srep16812

Weitere Informationen

Prof. Dr. Andreas Wieck, Lehrstuhl für Angewandte Festkörperphysik, Fakultät für Physik und Astronomie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-26726, E-Mail: andreas.wieck@rub.de

Dr. Shovon Pal, Lehrstuhl für Angewandte Festkörperphysik, Fakultät für Physik und Astronomie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-21175, E-Mail: shovon.pal@rub.de

Weitere Informationen:

http://aktuell.ruhr-uni-bochum.de/pm2015/pm00161.html.de

Dr. Julia Weiler | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Neue Wege im Kampf gegen die Parkinson-Krankheit: HZDR-Forscher entwickeln Radiotracer für die Differentialdiagnostik
26.02.2020 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Neues Behandlungsangebot für Tumoren der Knochen und Weichteile
21.02.2020 | Universitätsklinikum Regensburg (UKR)

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler beleuchten aktuellen Stand der Anwendung des Maschinenlernens bei Forschung an aktiven Materialien

Verfahren des Maschinenlernens haben durch die Verfügbarkeit von enormen Datenmengen in den vergangenen Jahren einen großen Zuwachs an Anwendungen in vielen Gebieten erfahren: vom Klassifizieren von Objekten, über die Analyse von Zeitreihen bis hin zur Kontrolle von Computerspielen und Fahrzeugen. In einem aktuellen Review in der Zeitschrift „Nature Machine Intelligence“ beleuchten Autoren der Universitäten Leipzig und Göteborg den aktuellen Stand der Anwendung und Anwendungsmöglichkeiten des Maschinenlernens im Bereich der Forschung an aktiven Materialien.

Als aktive Materialien bezeichnet man Systeme, die durch die Umwandlung von Energie angetrieben werden. Bestes Beispiel für aktive Materialien sind biologische...

Im Focus: Computersimulationen stellen bildlich dar, wie DNA erkannt wird, um Zellen in Stammzellen umzuwandeln

Forscher des Hubrecht-Instituts (KNAW - Niederlande) und des Max-Planck-Instituts in Münster haben entdeckt, wie ein essentielles Protein bei der Umwandlung von normalen adulten humanen Zellen in Stammzellen zur Aktivierung der genomischen DNA beiträgt. Ihre Ergebnisse werden im „Biophysical Journal“ veröffentlicht.

Die Identität einer Zelle wird dadurch bestimmt, ob die DNA zu einem beliebigen Zeitpunkt „gelesen“ oder „nicht gelesen“ wird. Die Signalisierung in der Zelle,...

Im Focus: Bayreuther Hochdruck-Forscher entdecken vielversprechendes Material für Informationstechnologien

Forscher der Universität Bayreuth haben ein ungewöhnliches Material entdeckt: Bei einer Abkühlung auf zwei Grad Celsius ändern sich seine Kristallstruktur und seine elektronischen Eigenschaften abrupt und signifikant. In diesem neuen Zustand lassen sich die Abstände zwischen Eisenatomen mithilfe von Lichtstrahlen gezielt verändern. Daraus ergeben sich hochinteressante Anwendungsmöglichkeiten im Bereich der Informationstechnologien. In der Zeitschrift „Angewandte Chemie – International Edition“ stellen die Wissenschaftler ihre Entdeckung vor. Die neuen Erkenntnisse sind aus einer engen Zusammenarbeit mit Partnereinrichtungen in Augsburg, Dresden, Hamburg und Moskau hervorgegangen.

Bei dem ungewöhnlichen Material handelt es sich um ein Eisenoxid mit der Zusammensetzung Fe₅O₆. In einem Hochdrucklabor des Bayerischen Geoinstituts (BGI),...

Im Focus: Von China an den Südpol: Mit vereinten Kräften dem Rätsel der Neutrinomassen auf der Spur

Studie von Mainzer Physikern zeigt: Experimente der nächsten Generation versprechen Antworten auf eine der aktuellsten Fragen der Neutrinophysik

Eine der spannendsten Herausforderungen der modernen Physik ist die Ordnung oder Hierarchie der Neutrinomassen. Eine aktuelle Studie, an der Physiker des...

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

CLIMATE2020 – Weltweite Online-Klimakonferenz vom 23. bis 30. März 2020

26.02.2020 | Veranstaltungen

Automatisierung im Dienst des Menschen

25.02.2020 | Veranstaltungen

Genomforschung für den Artenschutz - Internationale Fachtagung in Frankfurt

25.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Riesiger 3D-Drucker soll tonnenschwere Getriebeteile aus Stahl fertigen

27.02.2020 | Maschinenbau

Immunologie - Rachenmandeln als Test-Labor

27.02.2020 | Biowissenschaften Chemie

Pestizide erhöhen Risiko für Tropenkrankheit Schistosomiasis / Belastete Gewässer fördern Zwischenwirt des Erregers

27.02.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics