Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Photovoltaik aus selbstorganisierenden supramolekularen Netzwerken

02.03.2016

Organische Photovoltaik wird von vielen als Einstieg in eine kostengünstigere Stromerzeugung angesehen. Eine der noch zu lösenden Herausforderungen ist die geringe Ordnung der dünnen Schichten auf den Elektroden. Einen neuen Ansatz präsentiert nun ein Team von Wissenschaftlern der Technischen Universität München (TUM): Auf Graphenoberflächen bauten sie photoaktive Schichten aus sich selbst organisierenden molekularen Netzwerken. Ihre Forschungsergebnisse eröffnen interessante, neue Möglichkeiten, opto-elektronische Bauelemente molekülgenau herzustellen.

Unübertroffen beherrscht es die Natur, sich selbst organisierende, komplexe, molekulare Maschinerie aufzubauen. Diese kann Licht absorbieren und damit Ladungen trennen und Elektronen übertragen. Nanotechnologen träumen schon lange davon, diese biomolekularen Strukturen nachzuahmen und sie für eine kostengünstige Stromproduktion zu nutzen.


Rastertunnelmikroskopisches Bild des Netzwerks aus mit Melamin verknüpften Terrylendiimidmolekülen; rechts eingeblendet: Modell der atomaren Struktur

Bild: C. A. Palma / TUM

Forscher der Fakultäten für Physik und für Chemie der TU München, des Max-Planck-Instituts für Polymerforschung (MPI-P) und der Université de Strasbourg (UdS) haben nun Farbstoffmoleküle so modifiziert, dass sie als Bausteine für selbstorganisierende molekulare Netzwerke einsetzbar sind.

Auf der atomar glatten Oberfläche einer Graphenschicht auf Diamant formen die Moleküle die Zielarchitektur von selbst, ähnlich wie bei Proteinen oder in der DNA-Nanotechnologie. Die einzige treibende Kraft sind dabei die eingebauten, supramolekularen Wechselwirkungen auf der Basis von Wasserstoffbrücken. Wie erwartet produzierten die fertigen Netzwerke bei Belichtung Strom.

Von der Kunst zur Anwendung

„Lange Zeit galten die selbstorganisierenden molekularen Architekturen eher als Kunst,“ sagt PD Dr. Friedrich Esch, einer der Autoren der Arbeit. „Mit dieser Publikation präsentieren wir zum ersten Mal eine ernsthafte praktische Anwendung dieser Technologie.“

„Für die herkömmliche organischen Photovoltaik ist die Verbesserung der molekularen Ordnung noch immer eine Herausforderung. Der Nanotechnologie-Werkzeugkasten bietet uns dagegen die Möglichkeit, die Anordnung der Bausteine der Schicht atomgenau vorherzubestimmen,“ sagt Dr. Carlos-Andres Palma, der die Experimente mit betreute. „Über die physikalisch-chemische Steuerung der Komponenten haben wir weitere Stellschrauben für die Funktionsoptimierung.“

Die Wissenschaftler arbeiten nun daran, auch größere Flächen beschichten zu können und die photovoltaischen Eigenschaften unter Standardbedingungen zu reproduzieren. „Von selbstorganisierenden Schichten mit Farbstoffen, eingelagert zwischen zweidimensionalen Graphen-Elektroden, versprechen wir uns eine einfache Maßstabsvergrößerung, hin zu effizienten Photovoltaik-Elementen,“ sagt Dr. Palma. „Unsere Schichten werden damit zu einer Option für die Solar-Technologie.“

Perfektes Zusammenspiel von Chemie und Physik

Als photoaktives Farbstoffmolekül dient den Wissenschaftler Terrylen-Diimid. Das dreibindige Melamin verknüpft die lang gestreckten Diimid-Moleküle zu Netzwerken. Welche Architekturen daraus genau entstehen, legen die Chemiker durch die zuvor eingefügten Seitengruppen des Terrylen-Diimids fest.

„Diese Arbeit ist ein hervorragendes Beispiel für die interdisziplinäre Zusammenarbeit, wie wir sie mit der Einrichtung des Katalyseforschungszentrums beabsichtigt haben, ein perfektes Zusammenspiel von Chemie und Physik“ sagt Professor Ulrich Heiz, der Direktor des Zentralinstituts für Katalyseforschung der TU München.

Die Forschung wurde gefördert mit Mitteln des European Research Council (ERC Grants MolArt und Suprafunktion sowie Graphene Flagship-Projekt), der Deutschen Forschungsgemeinschaft (DFG) über die Exzellenzcluster Nanosystems Initiative Munich (NIM) und Munich-Centre for Advanced Photonics (MAP), des China Scholarship Council sowie der französischen Agence Nationale de la Recherche und des International Center for Frontier Research in Chemistry (icFRC).

Publikation:

Photoresponse of supramolecular self-assembled networks on graphene–diamond interfaces
Sarah Wieghold, Juan Li, Patrick Simon, Maximilian Krause, Yuri Avlasevich, Chen Li, Jose A. Garrido, Ueli Heiz, Paolo Samori, Klaus Müllen, Friedrich Esch, Johannes V. Barth, Carlos-Andres Palma
nature communications, 25.02.2016, DOI: 10.1038/ncomms10700

Kontakt:

Prof. Dr. Johannes V. Barth
Technische Universität München
Physik-Department (E20)
James Franck Str. 1, 85748 Garching, Germany
Tel.: +49 89 289 12608 – E-Mail: e20office@ph.tum.de

Weitere Informationen:

http://www.nature.com/ncomms/2016/160225/ncomms10700/abs/ncomms10700.html
http://www.e20.ph.tum.de

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt
25.05.2018 | Westfälische Wilhelms-Universität Münster

nachricht Nanopartikel aus Kläranlagen - vorläufige Entwarnung
02.05.2018 | Universität Siegen

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics