Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Beschreibung rotierender Moleküle leicht gemacht

21.12.2018

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in Flüssigkeiten

Feynman-Diagramme sind ein leistungsstarkes Werkzeug in der Physik der kondensierten Materie. Die Methode, die hochkomplexe Gleichungen in einfache Diagramme umwandelt, hat sich als eines der wirkungsvollsten Werkzeuge in der theoretischen Physik etabliert.


Feynman-Diagramme können nun auch benutzt werden, um rotierende Moleküle zu beschreiben

IST Austria/Birgit Rieger

Giacomo Bighin, ein Postdoc in der Forschungsgruppe von Mikhail Lemeshko am Institute of Science and Technology Austria (IST Austria), hat die Technik nun erweitert: War sie ursprünglich für subatomare Teilchen, also sehr einfache Teilchen, konzipiert, so kann sie nun auch auf weitaus komplexere Objekte, nämlich Moleküle, angewendet werden.

Die in der Zeitschrift „Physical Review Letters“ veröffentlichte Arbeit soll die Beschreibung von Molekülrotationen in Lösungen drastisch vereinfachen.

Dies bringt die Wissenschaftler ihrem langfristigen Ziel, chemische Reaktionen in Lösungsmitteln auf mikroskopischer Ebene zu verstehen und möglicherweise zu steuern, einen Schritt näher.

Manchmal ist die Lösung eines Problems näher als gedacht, zum Beispiel kann sie in einem anderen Bereich des eigenen Forschungsfeldes zu finden sein. Aber über Disziplinen hinweg zu denken ist schwierig und erfordert eine gute Kombination der Expertise sowie eine Umgebung, die interdisziplinäre Kooperationen unterstützt.

Eine solche Umgebung fand Giacomo Bighin am IST Austria vor, als er, ein Festkörperphysiker, in die Forschungsgruppe von Mikhail Lemeshko, einem Molekülphysiker, kam.

Das Ergebnis der Zusammenarbeit ist eine neue Methode für die Molekülphysik, die die Beschreibung rotierender Moleküle in Lösungen erheblich erleichtern kann und den Weg zu einer möglichen zukünftigen Steuerung ihrer Reaktionen ebnet.

„Moleküle sind ständig in Drehung, und wie sie miteinander wechselwirken, hängt von ihrer relativen Orientierung ab. Treffen sie ein anderes Molekül mit dem einem Ende, so hat das einen anderen Effekt als wenn sie es mit dem anderen Ende treffen “, erklärt Mikhail Lemeshko.

In Experimenten mit molekularen Gasen ist es bereits gelungen, die Orientierung von Molekülen und damit ihre chemischen Reaktionen zu kontrollieren, dasselbe auch in Lösungsmitteln zu tun, ist aber schwierig. Dies ist das langfristige Ziel, auf das Mikhail Lemeshko und seine Gruppe Schritt für Schritt hinarbeiten.

Der Schritt, den sie gerade erfolgreich getan haben, besteht darin, die Rotation eines Moleküls in einer Lösung besser beschreiben zu können. Dies stellt eine Voraussetzung für die Kontrolle der Reaktionen in dieser Umgebung dar.

Die Übertragung der Methode war alles andere als einfach. „Feynman-Diagramme funktionieren für strukturlose Teilchen wie zum Beispiel Elektronen. Strukturlos bedeutet, dass sie von Rotationen nicht verändert werden: Dreht man ein Elektron, sieht es genauso aus wie zuvor.

Moleküle dagegen sind komplexer und können sich drehen und ihre Orientierung im Raum verändern“, erklärt Giacomo Bighin. Um die Methode von Elektronen auf Moleküle zu übertragen, musste er einen neuen Formalismus entwickeln.

Zuvor war nicht bekannt, ob die Methode für Moleküle überhaupt funktionieren würde, und ihre Anpassung dauerte mehr als ein Jahr. Nun ist der Formalismus für den Einsatz in chemischen Problemen bereit.

„Wir erwarten, dass Leute mit einem molekularen Hintergrund sehen werden, dass es jetzt möglich geworden ist, Moleküle auf diese Weise zu untersuchen. Die Methode liefert extrem präzise Ergebnisse in der Physik der kondensierten Materie und hat das Potential, die gleiche Genauigkeit auch in molekularen Simulationen zu erreichen “, fügt Lemeshko hinzu.

Über das IST Austria
Das Institute of Science and Technology (IST Austria) in Klosterneuburg ist ein Forschungsinstitut mit eigenem Promotionsrecht. Das 2009 eröffnete Institut widmet sich der Grundlagenforschung in den Naturwissenschaften, Mathematik und Informatik. Das Institut beschäftigt ProfessorInnen nach einem Tenure-Track-Modell und Post-DoktorandInnen sowie PhD StudentInnen in einer internationalen Graduate School. Neben dem Bekenntnis zum Prinzip der Grundlagenforschung, die rein durch wissenschaftliche Neugier getrieben wird, hält das Institut die Rechte an allen resultierenden Entdeckungen und fördert deren Verwertung. Der erste Präsident ist Thomas Henzinger, ein renommierter Computerwissenschaftler und vormals Professor an der University of California in Berkeley, USA, und der EPFL in Lausanne. http://www.ist.ac.at

Wissenschaftliche Ansprechpartner:

Prof. Mikhail Lemeshko
Institute of Science and Technology Austria (IST Austria)
mikhail.lemeshko@ist.ac.at

Originalpublikation:

G. Bighin, T. V. Tscherbul, and M. Lemeshko: “Diagrammatic Monte Carlo Approach to Angular Momentum in Quantum Many-Particle Systems”, Phys. Rev. Lett. 121, 165301, DOI: 10.1103/PhysRevLett.121.165301
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.165301

Weitere Informationen:

https://ist.ac.at/de/forschung/forschungsgruppen/lemeshko-gruppe/ Webseite der Forschungsgruppe

Dr. Elisabeth Guggenberger | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Nierenerkrankung: EDV-System und Biomarker helfen bei Früherkennung
30.04.2019 | Universitätsklinikum Regensburg (UKR)

nachricht Wie halten Verbindungen von Muskeln und Sehnen ein Leben lang? Studie in der Fruchtfliege Drosophila
04.04.2019 | Westfälische Wilhelms-Universität Münster

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optische Superlinsen aus Gold

Oldenburger Forscher entwickeln neues optisches Mikroskop mit extrem hoher Auflösung

Eine kegelförmige Spitze aus Gold bildet das Kernstück eines neuen, extrem leistungsfähigen optischen Mikroskops, das Oldenburger Wissenschaftler in der...

Im Focus: Impfen über die Haut – Gezielter Wirkstofftransport mit Hilfe von Nanopartikeln

Forschenden am Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam ist es gelungen Nanopartikel so weiterzuentwickeln, dass sie von speziellen Zellen der menschlichen Haut aufgenommen werden können. Diese sogenannten Langerhans Zellen koordinieren die Immunantwort und alarmieren den Körper, wenn Erreger oder Tumore im Organismus auftreten. Mit dieser neuen Technologieplattform könnten nun gezielt Wirkstoffe, zum Beispiel Impfstoffe oder Medikamente, in Langerhans Zellen eingebracht werden, um eine kontrollierte Immunantwort zu erreichen.

Die Haut ist ein besonders attraktiver Ort für die Applikation vieler Medikamente, die das Immunsystem beeinflussen. Die geeigneten Zielzellen liegen in der...

Im Focus: Chaperone halten das Tumorsuppressor-Protein p53 in Schach: Komplexer Regelkreis schützt vor Krebs

Über Leben und Tod einer Zelle entscheidet das Anti-Tumor-Protein p53: Erkennt es Schäden im Erbgut, treibt es die Zelle in den Selbstmord. Eine neue Forschungsarbeit an der Technischen Universität München (TUM) zeigt, dass diese körpereigene Krebsabwehr nur funktioniert, wenn bestimmte Proteine, die Chaperone, dies zulassen.

Eine Krebstherapie ohne Nebenwirkungen, die gezielt nur Tumorzellen angreift – noch können Ärzte und Patienten davon nur träumen. Dabei hat die Natur ein...

Im Focus: Wasserstoff – Energieträger der Zukunft?

Fraunhofer-Allianz Energie auf Berliner Energietagen

Im Pariser Klimaabkommen beschloss die Weltgemeinschaft, dass die weltweite Wirtschaft zwischen 2050 und 2100 treibhausgasneutral werden soll. Um die...

Im Focus: Quanten-Cloud-Computing mit Selbstcheck

Mit einem Quanten-Coprozessor in der Cloud stoßen Innsbrucker Physiker die Tür zur Simulation von bisher kaum lösbaren Fragestellungen in der Chemie, Materialforschung oder Hochenergiephysik weit auf. Die Forschungsgruppen um Rainer Blatt und Peter Zoller berichten in der Fachzeitschrift Nature, wie sie Phänomene der Teilchenphysik auf 20 Quantenbits simuliert haben und wie der Quantensimulator das Ergebnis erstmals selbständig überprüft hat.

Aktuell beschäftigen sich viele Wissenschaftler mit der Frage, wie die „Quantenüberlegenheit“ auf heute schon verfügbarer Hardware genutzt werden kann.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kindermediziner tagen in Leipzig

22.05.2019 | Veranstaltungen

Jubiläumskongress zur Radiologie der Zukunft

22.05.2019 | Veranstaltungen

Wissensparcour bei der time4you gestartet

22.05.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

18 erdgroße Exoplaneten entdeckt

22.05.2019 | Physik Astronomie

Erreger Helicobacter pylori - Evolution im Magen

22.05.2019 | Biowissenschaften Chemie

Fraunhofer HHI beteiligt sich an BMBF-geförderter Großinitiative für die Quantenkommunikation

22.05.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics