Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stabilität skyrmionischer Bits

14.10.2015

Skyrmionen gelten gegenwärtig als heiße Kandidaten für Informationsbits in zukünftigen digitalen magnetischen Speichermedien. Sie besitzen sehr viel versprechende Eigenschaften und können wenige Nanometer groß sein. Wissenschaftler der Universität Hamburg haben nun die Lebensdauern von solchen Strukturen eingehend untersucht um die Stabilitätsmechanismen zu ergründen und für potentielle Datenspeicher maßschneidern zu können.

Ein zentraler Aspekt unserer digitalisierten Welt ist die Speicherung von einer immensen Menge an Daten. Es gibt aktuell verschiedene Methoden dieses zu bewerkstelligen, wobei eine davon auf der Verwendung von so genannten kollinearen magnetischen Zellen basiert.


Die Konfigurationen eines magnetischen Skyrmions auf der linken Seite und eines Ferromagneten auf der rechten Seite. Die Kegel geben die Ausrichtung der lokalisierten atomaren Magnete an. Das Skyrmion besteht aus einer geringen Anzahl an Atomen und besitzt damit einen Durchmesser von nur wenigen Nanometern. Forscher der Universität Hamburg haben das spontane Schalten zwischen den beiden Zuständen, welche als Informationsbits in zukünftigen Speichermedien dienen könnten, untersucht.

(Bild: J. Hagemeister, Universität Hamburg)

In diesen Zellen sind alle atomaren Magnete gleich ausgerichtet und können prinzipiell in zwei verschiedene Richtungen zeigen. Eine solche Zelle kann damit zwei verschiedene Zustände haben und bildet auf diese Weise ein Informationsbit, welches der elementare Baustein eines jeden digitalen Speichermediums ist. In einem magnetischen Datenspeicher wie zum Beispiel der herkömmlichen Festplatte werden viele dieser Zellen auf einer magnetischen Scheibe aneinander gereiht.

Um in der Zukunft das Bedürfnis nach Speichermedien mit noch größeren Kapazitäten befriedigen zu können, müssen die Speicherzellen weiter miniaturisiert werden.

Mit den herkömmlichen magnetischen Speichermedien ist dies nur noch begrenzt möglich, da es eine minimal mögliche Größe gibt, die durch das sogenannte paramagnetische Limit gegeben ist. Dieses liegt daran, dass die Zellen unterhalb dieser Größe thermisch instabil werden und spontan ihren Zustand ändern, wodurch die Information verloren gehen würde.

Es bedarf daher neuer Wege um die Miniaturisierung voran zu bringen. In diesem Zusammenhang hat in den letzten Jahren insbesondere die experimentelle Entdeckung einer nichtkollinearen Struktur, das magnetische Skyrmion, von sich reden gemacht.

Im Skyrmion sind die atomaren Magnete nicht gleich ausgerichtet, sondern bilden einen magnetischen Wirbel bzw. anschaulich gesprochen einen Knoten. Diese Skyrmion-Knoten haben sehr viel versprechende Eigenschaften für neuartige Speichermedien, in denen man zwischen der Skyrmionstruktur („1“) und einer kollinearen ferromagnetischen Struktur („0“), in der alle atomaren Momente gleich ausgerichtet sind, schalten würde.

Wie das Online-Fachjournal „Nature Communication“ am 14. Oktober 2015 berichtete, wurde von Wissenschaftlern der Universität Hamburg die Stabilität einzelner Skyrmionen als Funktion der Temperatur und eines stabilisierenden äußeren Magnetfeldes erforscht. Durch das Justieren der Magnetfeldstärke kann die Lebensdauer der Skyrmionstruktur gezielt beeinflusst werden. Es stellte sich bei den Untersuchungen heraus, dass sich die beiden Zustände „0“ (Ferromagnet) und „1“ (Skyrmion) hinsichtlich ihrer Stabilitätseigenschaften sehr unterschiedlich verhalten.

„Man kann sich zur Veranschaulichung einen Hund vorstellen, der zwischen den zwei Tälern „Ferromagnet“ und „Skyrmion“ hin und her läuft, wobei er jedes Mal einen Berg überwinden muss. Das Tal „Ferromagnet“ liegt niedriger als das Tal „Skyrmion“ und der Hund ist hier ausgeruht und bewegungsfreudig. Im höher gelegenen Tal „Skyrmion“ ist der Hund dagegen erschöpft und macht sich nur ungern wieder auf zurück in das Tal „Ferromagnet“." erklärt Julian Hagemeister, Doktorand in der Arbeitsgruppe von Prof. Roland Wiesendanger.

"Unsere Untersuchungen haben gezeigt, dass solche Skyrmion-Knoten von einer ferromagnetischen Oberfläche nur schwierig entfernt werden können und gerade diese Eigenschaft macht die Skyrmionen so wertvoll für die Anwendung in zukünftigen Speichermedien." erläutert Dr. Elena Vedmedenko.

Die in Hamburg gewonnenen Erkenntnisse werden möglicherweise in der Zukunft dazu beitragen können, die Lebensdauer und Schalteigenschaften von Skyrmionen in geeigneten Materialien präzise zu kontrollieren, was die Entwicklung völlig neuartiger Datenspeicher mit gigantischer Speicherkapazität ermöglichen könnte.

Weitere Informationen:
Heiko Fuchs
Sonderforschungsbereich 668
Universität Hamburg
Jungiusstr. 9A, 20355 Hamburg
Tel.: (0 40) 4 28 38 - 69 59
Fax: (0 40) 4 28 38 - 24 09
E-Mail: hfuchs@physnet.uni-hamburg.de

Weitere Informationen:

http://www.sfb668.de
http://www.nanoscience.de

Heiko Fuchs | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Kryptografie für das Auto der Zukunft
11.10.2019 | Fraunhofer-Institut für Sichere Informationstechnologie SIT

nachricht Mit einer WebApp passende Grünflächen aufspüren – Interessierte können jetzt Beta-Version testen
11.10.2019 | Leibniz-Institut für ökologische Raumentwicklung e. V.

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: Ultraschneller Blick in die Photochemie der Atmosphäre

Physiker des Labors für Attosekundenphysik haben erkundet, was mit Molekülen an den Oberflächen von nanoskopischen Aerosolen passiert, wenn sie unter Lichteinfluss geraten.

Kleinste Phänomene im Nanokosmos bestimmen unser Leben. Vieles, was wir in der Natur beobachten, beginnt als elementare Reaktion von Atomen oder Molekülen auf...

Im Focus: Wie entstehen die stärksten Magnete des Universums?

Wie kommt es, dass manche Neutronensterne zu den stärksten Magneten im Universum werden? Eine mögliche Antwort auf die Frage nach der Entstehung dieser sogenannten Magnetare hat ein deutsch-britisches Team von Astrophysikern gefunden. Die Forscher aus Heidelberg, Garching und Oxford konnten mit umfangreichen Computersimulationen nachvollziehen, wie sich bei der Verschmelzung von zwei Sternen starke Magnetfelder bilden. Explodieren solche Sterne in einer Supernova, könnten daraus Magnetare entstehen.

Wie entstehen die stärksten Magnete des Universums?

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Wenn die Erde flüssig wäre

Eine heisse, geschmolzene Erde wäre etwa 5% grösser als ihr festes Gegenstück. Zu diesem Ergebnis kommt eine Studie unter der Leitung von Forschenden der Universität Bern. Der Unterschied zwischen geschmolzenen und festen Gesteinsplaneten ist wichtig bei die Suche nach erdähnlichen Welten jenseits unseres Sonnensystems und für das Verständnis unserer eigenen Erde.

Gesteinsplaneten so gross wie die Erde sind für kosmische Massstäbe klein. Deshalb ist es ungemein schwierig, sie mit Teleskopen zu entdecken und zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Bildung.Regional.Digital: Tagung bietet Rüstzeug für den digitalen Unterricht von heute und morgen

10.10.2019 | Veranstaltungen

Zukunft Bau Kongress 2019 „JETZT! Bauen im Wandel“

10.10.2019 | Veranstaltungen

Aktuelle Trends an den Finanzmärkten im Schnelldurchlauf

09.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Fraunhofer IZM setzt das E-Auto auf die Überholspur

11.10.2019 | Energie und Elektrotechnik

IVAM-Produktmarkt auf der COMPAMED 2019: Keine Digitalisierung in der Medizintechnik ohne Mikrotechnologien

11.10.2019 | Messenachrichten

Kryptografie für das Auto der Zukunft

11.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics