Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schwerfälliger Stromfluss könnte Weg zu energiesparenden Computern weisen

27.01.2016

Computer und andere elektronische Geräte haben heute einen beträchtlichen Anteil am weltweiten Energieverbrauch. Mit den heute genutzten Technologien lässt sich dieser Verbrauch aber kaum senken, sodass die Chips in den energiesparenden Geräten der Zukunft aus neuartigen Materialien bestehen werden. Neueste Forschungsergebnisse aus dem Paul Scherrer Institut PSI geben Hinweise darauf, wie man zu solchen Materialien kommen könnte.

Dafür haben Forschende ein Material untersucht, das an sich bereits die nötigen Merkmale hat: Es ist magnetisch und kann elektrischen Strom ganz ohne Widerstand leiten. Der Nachteil: Es hat diese Eigenschaften nur bei sehr tiefen Temperaturen, bei denen man keine Computer betreiben könnte.


Prinzip des Experiments, bei dem der Stromfluss tief im Inneren eines Materials untersucht wurde.

Grafik: Claudia Cancellieri


Die Forschenden Claudia Cancellieri und Vladimir Strocov am Messplatz ADRESS der Synchrotron Lichtquelle Schweiz SLS des Paul Scherrer Instituts.

Foto: Paul Scherrer Institut/Markus Fischer

Bei realistischen Temperaturen dagegen fliesst der Strom in dem Material ausgesprochen schwerfällig. Mit Hilfe von Experimenten an der Synchrotron Lichtquelle Schweiz SLS des Paul Scherrer Instituts konnten die Forschenden die Ursachen für den erschwerten Stromfluss bestimmen.

Diese Ergebnisse dürften nun helfen, gezielt neue Materialien zu entwickeln, die auch bei höheren Temperaturen die besonderen Eigenschaften behielten und so in zukünftigen Computern zum Einsatz kommen könnten. Ihre Ergebnisse veröffentlichen die Forschenden im Fachjournal Nature Communications.

Den Energieverbrauch elektronischer Geräte zu reduzieren ist eine der wesentlichen Herausforderungen bei der Entwicklung der Elektronik der Zukunft. So verbrauchen zum Beispiel die riesigen Rechenzentren, die hinter Internet-Suchmaschinen oder sozialen Medien stehen, so viel Energie wie eine Grossstadt.

Energiesparende Computer setzen aber eine fundamentale Wende voraus: neuartige Materialien werden die Halbleiter ersetzen müssen, die in den vergangenen Jahrzenten die Grundlage aller elektronischen Geräte bilden – vom frühen Transistorradio bis zum Smartphone.

„Zu den besonders vielversprechenden Kandidaten gehören die Oxide – komplexe Verbindungen von Metallen mit Sauerstoff“, erklärt Vladimir Strocov, leitender Wissenschaftler am Paul Scherrer Institut PSI. „So könnten elektronische Bauelemente aus bestimmten Oxiden die Funktion der heutigen Transistoren übernehmen und würden dabei nur einen kleinen Bruchteil der Energie verbrauchen.“ Transistoren sind auf heutigen Mikrochips milliardenfach vertreten und verantworten einen grossen Teil des Energieverbrauchs der Chips.

Materialverzerrung sorgt für trägen – oder ungehinderten – Stromfluss

Strocovs Forschungsteam hat nun gemeinsam mit Kollegen der ETH Zürich und des japanischen Forschungsinstituts RIKEN ein Material untersucht, das eigentlich die nötigen Eigenschaften für den Einsatz in diesen Bauteilen mitbringt: Es ist magnetisch und supraleitend, kann also elektrischen Strom ganz ohne Widerstand leiten.

Der Nachteil: Es hat diese Eigenschaften nur bei sehr tiefen Temperaturen, bei denen sich kein Computer betreiben lässt. Erhöht man die Temperatur, wird der Stromfluss in dem Material hingegen ausgesprochen schwerfällig. Wie sie in einer Studie im Fachjournal Nature Communications berichten, konnten die Forschenden nun die Ursachen für den erschwerten Stromfluss bestimmen.

„Für diesen ist offenbar dasselbe Phänomen verantwortlich, das bei tiefen Temperaturen den Strom ungehindert fliessen lässt“, erklärt Strocov. „Unsere Ergebnisse könnten daher helfen, gezielt neue Materialien zu entwickeln, die auch noch bei höheren Temperaturen für die neuartigen Bauteile geeignet wären und so in zukünftigen Computern zum Einsatz kommen könnten.“

Wenn durch ein Material ein elektrischer Strom fliesst, bedeutet das, dass sich Elektronen durch dieses Material bewegen. Das Gerüst solcher Materialien bilden regelmässig angeordnete, wenig bewegliche Ionen. „Die Elektronen, die im Material fliessen, ziehen die Ionen zu sich und verzerren so das Gerüst“, erklärt Claudia Cancellieri, die als PSI-Wissenschaftlerin an der Studie beteiligt war, jedoch mittlerweile an der EMPA tätig ist.

„Diese Ionen ziehen dann wiederum die Elektronen an und bremsen sie auf diese Weise aus.“ Offenbar lässt die gleiche Verzerrung das Material aber bei tiefen Temperaturen supraleitend werden. „In einem Supraleiter finden Elektronen zu Paaren zusammen und können sich dann gemeinsam ungehindert durch das Material bewegen. Bei tiefen Temperaturen sorgt die Verzerrung des Materialgerüsts dafür, dass sich die Elektronen paarweise verbinden“, so Cancellieri.

Mit diesem Wissen könnten Forschende ähnliche Materialien gezielt so verändern, dass sie auch bei höheren Temperaturen supraleitend bleiben. Ein Ansatz ist dabei, mithilfe spezieller nanotechnolgischer Verfahren einzelne Sauerstoffatome in dem Material durch Atome eines anderen Elements zu ersetzen, die zusätzliche Elektronen mitbringen.

Strom tief im Material beobachtet

Das Material, das die Forschenden in ihren Experimenten untersucht haben, ist nicht ein einzelnes Oxid, sondern die Kombination von den zwei Oxiden mit den chemischen Formeln LaAlO3 und SrTiO3. Dabei leiten die beiden Oxide einzeln keinen Strom, fügt man sie aber zusammen, kann entlang der Grenzfläche Strom fliessen.

Allgemein kann die Verbindung von zwei Oxiden neuartige Eigenschaften haben, die in zukünftigen Geräten nützlich sein könnten. Den Stromfluss an der Grenzfläche zwischen den Materialien haben die Forschenden mit hochenergetischem Synchrotronlicht an der Synchrotron Lichtquelle Schweiz SLS des Paul Scherrer Instituts gemessen. Der hiesige Messplatz „ADRESS“ ist weltweit führend, wenn es um solche heraufordernden Experimente geht.

Text: Paul Scherrer Institut/Paul Piwnicki


Über das PSI
Das Paul Scherrer Institut PSI entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Energie und Umwelt sowie Mensch und Gesundheit. Die Ausbildung von jungen Menschen ist ein zentrales Anliegen des PSI. Deshalb sind etwa ein Viertel unserer Mitarbeitenden Postdoktorierende, Doktorierende oder Lernende. Insgesamt beschäftigt das PSI 1900 Mitarbeitende, das damit das grösste Forschungsinstitut der Schweiz ist. Das Jahresbudget beträgt rund CHF 380 Mio.


Kontakt/Ansprechpartner:

Dr. Vladimir Strocov, Forschungsgruppe Spektroskopie neuartiger Materialien,
Paul Scherrer Institut, Villigen PSI, Schweiz
Telefon: +41 56 310 53 11, E-Mail: vladimir.strocov@psi.ch

Originalveröffentlichung:
Polaronic metal state at the LaAlO3/SrTiO3 interface
C. Cancellieri, A.S. Mishchenko, U. Aschauer, A. Filippetti, C. Faber, O.S. Barišić,
V.A. Rogalev, T. Schmitt, N. Nagaosa and V.N. Strocov
Nature Communications, 27. Januar 2016
DOI: http://dx.doi.org/10.1038/NCOMMS10386

Weitere Informationen:

http://psi.ch/ZZhK Medienmitteilung auf der Seite des PSI mit ausführlicher Bildlegende

Dagmar Baroke | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Ein superschneller «Lichtschalter» für künftige Autos und Computer
18.11.2019 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Rostocker Forscher machen das Netz schlauer
18.11.2019 | Universität Rostock

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neu entwickeltes Glas ist biegsam

Eine internationale Forschungsgruppe mit Beteiligung der Österreichischen Akademie der Wissenschaften hat ein Glasmaterial entwickelt, das sich bei Raumtemperatur bruchfrei verformen lässt. Das berichtet das Team aktuell in "Science". Das extrem harte und zugleich leichte Material verspricht ein großes Anwendungspotential – von Smartphone-Displays bis hin zum Maschinenbau.

Gläser sind ein wesentlicher Bestandteil der modernen Welt. Dabei handelt es sich im Alltag meist um sauerstoffhaltige Gläser, wie sie etwa für Fenster und...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: Veränderungen der Chiralität von Molekülen in Echtzeit beobachten

Chirale Moleküle – Verbindungen, die als Bild und Spiegelbild vorkommen – spielen eine wichtige Rolle in biologischen Prozessen und in der chemischen Synthese. Chemikern der ETH Zürich ist es nun erstmals gelungen, mit Hilfe von Ultrakurzzeit-Laserpulsen Änderungen der Chiralität während einer chemischen Reaktion in Echtzeit zu beobachten.

Manche Moleküle können in zwei spiegelbildlichen Formen existieren, ähnlich wie unsere Hände. Obwohl solche sogenannten Enantiomere fast identische...

Im Focus: Durchbruch in der Malariaforschung

Eine internationale Forschungsgruppe um den Zellbiologen Volker Heussler von der Universität Bern hat hunderte genetische Schwachstellen des Malaria-Parasiten Plasmodium identifiziert. Diese sind in der Medikamenten- und Impfstoffentwicklung dringend erforderlich, um die Krankheit dereinst ausrotten zu können.

Trotz grosser Anstrengungen in Medizin und Wissenschaft, sterben weltweit immer noch mehr als 400'000 Menschen an Malaria. Die Infektionskrankheit wird durch...

Im Focus: Bauplan eines bakteriellen Kraftwerks entschlüsselt

Wissenschaftler der Universität Würzburg und der Universität Freiburg gelang es die komplexe molekulare Struktur des bakteriellen Enzyms Cytochrom-bd-Oxidase zu entschlüsseln. Da Menschen diesen Typ der Oxidase nicht besitzen, könnte dieses Enzym ein interessantes Ziel für neuartige Antibiotika sein.

Sowohl Menschen als auch viele andere Lebewesen brauchen Sauerstoff zum Überleben. Bei der Umsetzung von Nährstoffen in Energie wird der Sauerstoff zu Wasser...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage 2020: „Mach es einfach!“

18.11.2019 | Veranstaltungen

Humanoide Roboter in Aktion erleben

18.11.2019 | Veranstaltungen

1. Internationale Konferenz zu Agrophotovoltaik im August 2020

15.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Auch parasitische Wespen machen Fettsäuren selbst

18.11.2019 | Biowissenschaften Chemie

Gentherapie: Neue Transporter für DNA entwickelt

18.11.2019 | Biowissenschaften Chemie

Die besten Eigenschaften bündeln: neues Materialkonzept für Solarzellen

18.11.2019 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics