Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

SCHOTT treibt autonomes Fahren voran

12.09.2019

Glaslösungen spielen eine Schlüsselrolle bei der Verbesserung von LiDAR-Sensoren in selbstfahrenden Autos

Wenn es um autonomes Fahren geht, nutzen die derzeit innovativsten Technologien LiDAR- (Light Detection and Ranging) Sensoren. Diese werden zusammen mit Radar und Kameras durch künstliche Intelligenz (KI) verbunden und können künftig das höchste Level bei Fahrerassistenzsystemen (ADAS 5) und die vollständige Automatisierung aller Fahrfunktionen realisieren.


SCHOTT bietet Schutzfenster, optische Komponenten und hermetische Gehäuse und damit das breiteste Portfolio an Glaskomponenten für alle relevanten LiDAR-Technologien, die derzeit "im Rennen" sind: vom mechanischen Spinnen, MEMS-Scannen über Flash bis hin zum Optical Phased Array (OPA).

Foto: SCHOTT


Für LiDAR-Sensorsysteme ermöglicht BOROFLOAT® 33 Glas Schutzfenster mit hoher Transmission, ausgezeichneter mechanischer Festigkeit, hervorragender Wärmebeständigkeit und hoher chemischer Beständigkeit. Foto: SCHOTT

Keine der heute auf dem Markt befindlichen LiDAR-Technologien erfüllt jedoch die erforderlichen Anforderungen an Leistung und Zuverlässigkeit für ein völlig autonomes Fahren zu wettbewerbsfähigen Preisen.

Mit dem breitesten Angebot an hochwertigen Glaskomponenten und hermetischen Verpackungen für LiDAR-Hersteller und -Lieferanten ist SCHOTT jetzt startklar, um das autonome Fahren in die Zukunft mit voranzutreiben.

Der internationale Technologiekonzern SCHOTT hat eine neue Plattform gelauncht, die für den LiDAR-Markt das breiteste Portfolio an Glaslösungen für Sensorsysteme kombiniert mit Expertise und Produktberatung bietet. Die Hochleistungswerkstoffe von SCHOTT ermöglichen neue und optimierte Komponenten für LiDAR - vom Schutzfenster über optische Produkte bis hin zu hermetischen Verpackungen.

"Der ganzheitliche Ansatz von SCHOTT in Kombination mit maßgeschneiderten Lösungen kann wesentlich zur Verbesserung der Sensorik beitragen", erklärt Boris Eichhorn, Projektleiter für "LiDAR" bei SCHOTT. "SCHOTT ist damit ein zuverlässiger Partner für die Weiterentwicklung der LiDAR-Technologien wie beispielsweise Mechanical Spinning, MEMs-Scanning, Flash LiDAR und Optical Phased Arrays (OPA)."

Hochwertige Schutzfenster widerstehen rauen Bedingungen

LiDAR-Sensorsysteme müssen vor Regen, Temperaturschwankungen und Stößen, durch Kies oder Steine und andere Verschmutzungen geschützt werden. So eignen sich Spezialgläser – im Gegensatz zu anderen transparenten Materialien wie etwa Polymer - hervorragend als Schutzfenster, um empfindliche Bauteile vor kritischen Umwelteinflüssen zu schützen.

Doch nicht nur die Festigkeit ist entscheidend. Schutzfenster müssen eine hohe Transmission aufweisen, die nahes Infrarot (NIR) durchlässt und gleichzeitig sichtbares Umgebungslicht dämpft. Glasabsorptionsfilter RG850 von SCHOTT bieten beides: Sie sind transparent im NIR und im sichtbaren Bereich opak.

LiDAR-Sensoren, die Schutzfenster mit hoher Transmission, hoher mechanischer Festigkeit, hervorragender thermischer und hoher chemischer Beständigkeit benötigen, können am besten mit BOROFLOAT® 33 Glas ausgestattet werden.

Darüber hinaus hat sich eine Antireflexbeschichtung (AR) mit saphirähnlicher Härte als sehr robust unter rauen mechanischen Abriebbedingungen erwiesen; sie eignet sich damit prima für den Einsatz in Optiken von UV-, sichtbaren und Infrarot-Lasersystemen. Für Testzwecke stehen zudem LiDAR-spezifische Beschichtungen, optimiert für NIR-Wellenlängenbereiche, zur Verfügung.

Filter, Substrate und Linsen - hohe Leistung für den optischen Pfad

LiDAR-Systeme arbeiten in der Regel mit Dioden, die das einfallende Laserlicht sammeln. Bevor das Licht sie erreicht, wird es zunächst von Spiegeln oder Strahlteilern umgelenkt und durch Filter geleitet, so dass nur die gewünschte Wellenlänge übertragen wird. Hochwertige Komponenten sind entscheidend für die Qualität der optischen Übertragung, denn der Laserstrahl sollte kein einziges Photon verlieren. Aufgrund seiner außergewöhnlich hohen Transmission und Transparenz für eine farblose Optik können einige Komponenten für den optischen Pfad auch aus BOROFLOAT® 33 Glas hergestellt werden.

BOROFLOAT® 33 ist mit seiner hervorragenden Temperaturstabilität und Thermoschockbeständigkeit ideal als robustes Substrat für LiDAR-Spiegel, Strahlteiler und Bandpassfilter. D263® T eco, ein besonders dünnes LiDAR-Filtersubstrat, bietet eine sehr hohe Transparenz über ein breites Anwendungsspektrum. Es eignet sich zudem für anodisches Bonden und chemisches Härten. SCHOTT RG 80 Glas dient zur Filterung des sichtbaren Lichts und kann als Substrat für Schmalbandfilter verwendet werden.

Die speziellen Eigenschaften von MEMpax® machen es zu einem hervorragenden Beschichtungssubstrat, das Anforderungen an MEMS-Spiegel erfüllt. Es korrespondiert mit der thermischen Ausdehnung von Silizium und lässt sich anodisch bonden. LiDAR-Sensoren müssen langfristig eine gute Bildqualität liefern, unabhängig von Temperaturunterschieden und aggressiven Klimabedingungen.

Oft werden in LiDAR-Sensorsystemen eine hohe Transmission und ein thermisches Linsensystem benötigt: SCHOTT bietet hierfür eine Auswahl an optischen Gläsern mit hohem Brechungsindex.

LiDAR-Sensoren müssen neben der hervorragenden Bildqualität gleichzeitig auch über eine kompakte und leichte Bauweise verfügen. Asphärische Linsen in verschiedenen Größen und Materialien erfüllen diese Anforderungen perfekt. Alle Linsen können nach Kundenwunsch beschichtet werden.

Hermetische Gehäuse schützen und versorgen LiDAR-Sensoren

Mit hermetischen Gehäusen von SCHOTT können Laserdioden, Fotodioden und MEMS-Spiegel in allen Arten von LiDAR-Sensoriksystemen gegen innere Kondensation und raue äußere Einflüsse durch die Fahrumgebung geschützt werden.

SCHOTT bietet LiDAR-Sensorherstellern und ihren Komponentenlieferanten eine partnerschaftliche Zusammenarbeit sowie optimierte Lösungen für eine wettbewerbsfähige, hochvolumige Fertigung. Der hermetischen Verpackungstechnologie von SCHOTT vertrauen weltweit führenden Automobil- und optischen Modulhersteller.

SCHOTT bietet verschiedene Optionen in Bezug auf Produktgröße, Form, Materialien, Technologie sowie eine umfassende F&E-Unterstützung.  In Gehäusen für Lichtquellen von LiDAR-Sensoren kühlen TEC (thermoelektrischer Kühler) sowie Kupferkopf-Designs den Hochleistungslaser, um die optische Leistung zu maximieren und für eine konstante Wellenlänge zu sorgen.

Hochtransparentes Glas und fortschrittliche Designs ermöglichen eine hervorragende optische Leistung. Durch die hermetische Verpackungstechnik können die Fotodioden einwandfrei und zuverlässig arbeiten.

Gehäuse für MEMS-Spiegel von LiDAR-Sensoren ermöglichen eine bessere MEMS-Leistung, da eine vakuumdichte hermetische Umgebung für optimale Reaktionsgeschwindigkeit und Scanleistung unerlässlich ist. Nach der Montage auf Leiterplatten bieten sie dank Through-Hole-Technologie, miniaturisierten Designs und verschiedenen Gehäuseformen nach Kundenspezifikation eine bessere Beständigkeit gegen mechanische Stöße und Vibrationen.

SCHOTT ist aufgrund seiner langjährigen Erfahrung in der Automobil- und Optoelektronikindustrie seit Jahrzehnten ein zuverlässiger Partner und Lieferant. Boris Eichhorn: "Wenn es um autonomes Fahren geht, findet die LiDAR-Industrie bei SCHOTT das breiteste Sortiment an Glaskomponenten und hermetischen Gehäusen für LiDAR-Technologien sowie anspruchsvolles Know-how und Unterstützung bei ihren Sensorherausforderungen entsprechend unseres Claims ´sensing your vision´.“

Links: schott.com/lidar

Trademarks: BOROFLOAT®; D263®; MEMpax®


SCHOTT ist ein international führender Technologiekonzern auf den Gebieten Spezialglas, Glaskeramik und verwandten High-Tech-Materialien. Mit der Erfahrung von über 130 Jahren ist das Unternehmen ein innovativer Partner für viele Branchen, zum Beispiel Hausgeräteindustrie, Pharma, Elektronik, Optik, Life Sciences, Automobil- und Luftfahrtindustrie. SCHOTT ist weltweit präsent mit Produktions- und Vertriebsstandorten in 34 Ländern. Im Geschäftsjahr 2017/2018 erzielte der Konzern mit über 15.500 Mitarbeitern einen Umsatz von 2,08 Milliarden Euro. Die SCHOTT AG hat ihren Hauptsitz in Mainz und ist zu 100 Prozent im Besitz der Carl-Zeiss-Stiftung. Diese ist eine der ältesten privaten und größten wissenschaftsfördernden Stiftungen in Deutschland. Als Stiftungsunternehmen nimmt SCHOTT eine besondere Verantwortung für Mitarbeiter, Gesellschaft und Umwelt wahr.

Presse- und Medienkontakt

Christine Fuhr
Public Relations Manager
SCHOTT AG
Hattenbergstraße 10
55122 Mainz
+49 6131/66-4550
christine.fuhr@schott.com

https://www.schott.com

Christine Fuhr | SCHOTT AG

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Supercomputer „Hawk“ eingeweiht: Höchstleistungsrechenzentrum der Universität Stuttgart erhält neuen Supercomputer
19.02.2020 | Universität Stuttgart

nachricht Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter
19.02.2020 | Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Globale Datenbank für Karstquellenabflüsse

21.02.2020 | Geowissenschaften

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungsnachrichten

Langlebige Fachwerkbrücken aus Stahl einfacher bemessen

21.02.2020 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics