Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Saar-Physiker schaffen Grundlage für Schnelltests gegen Krankheiten wie Diabetes oder Malaria

08.08.2018

Physiker der Universität des Saarlandes haben ein Verfahren entwickelt, das mit künstlicher Intelligenz in Sekundenschnelle die Form von Blutzellen klassifiziert. Es handelt sich um Grundlagenforschung, die in Zukunft etwa Schnelltests für Krankheiten wie Diabetes, Malaria oder Sichelzellenanämie ermöglichen könnte. Alexander Kihm und Stephan Quint aus der Forschergruppe von Professor Christian Wagner nutzen hierzu Methoden der Mustererkennung durch künstliche neuronale Netzwerke: Diese arbeiten ähnlich wie das Zusammenspiel der Nervenzellen im menschlichen Gehirn. Das Softwareprogramm ist über Blutzellen hinaus auch auf andere große Mengen mikroskopisch kleiner Objekte übertragbar.  Die Wissenschaftler veröffentlichen ihre Forschung in der Fachzeitschrift PLOS Computational Biology, DOI: https://doi.org/10.1371/journal.pcbi.1006278

Wenn das Blut durch unsere Adern rauscht, treibt die Strömung die roten Blutzellen in rasendem Tempo voran. Das Herz pumpt das Blut mit enormem Druck in die Arterien, dabei drückt es die Blutkörperchen gegen die Gefäßwände. Die winzigen roten Zellen – ein Bluttropfen enthält Millionen davon – kann man sich vorstellen wie elastische Gel-Plättchen mit dickerem Rand. Je nachdem wie hoch der Druck ist, mit dem sie durch die Gefäße schießen, verändern sie ihre Form.


Die Analyse-Software erfasst über Mustererkennung schnell große Mengen von Zellen und klassifiziert diese anhand von charakteristischen Krümmungen und Wölbungen: Hier die symmetrische Croissant-Form.

Bild: Kihm/Quint/Wagner


Um das neuronale Netzwerk zu trainieren, presste Alexander Kihm Blut durch hauchfeine Mikroröhrchen in einem solchen Objektträger und klassifizierte die Blutkörperchen unter dem Mikroskop.

Foto: Ehrlich

„Bei hoher Geschwindigkeit des Blutflusses haben die Blutzellen eher die charakteristische Form eines Pantoffels, weshalb Forscher sie nach dem englischen ´Slipper` tauften. Ist die Geschwindigkeit niedriger, schwimmen sie eher durch die Mitte des Blutgefäßes und zeigen eine symmetrische Form, ähnlich einem Croissant“, erklärt Doktorand Alexander Kihm, der sich im Forscherteam von Professor Christian Wagner mit roten Blutzellen befasst. Das Fließverhalten komplexer Flüssigkeiten wie Blut ist ein Forschungsschwerpunkt der Experimentalphysiker.

Auch bei manchen Erkrankungen sind solche Formveränderungen von Blutzellen typisch. „So haben etwa Diabetes, Malaria oder die erblich bedingte Sichelzellenanämie Einfluss auf die Steifigkeit der Blutzellen“, erklärt Kihm. Ebenso können Medikamente ihre mechanischen Eigenschaften beeinflussen. Bisherige Analyseverfahren, die diese Veränderungen nachweisen, dauern lange, sind teuer und aufwändig.

Bei der klassischen Methode zählen Labor-Mitarbeiter unter dem Mikroskop die Blutzellen mit bestimmter Form. Neben den typischen charakteristischen Formen von Croissant oder Slipper existieren aber auch vielfältige nicht eindeutige Zwischenformen, die dieses Unterfangen nicht einfacher machen.

Kihm hat jetzt in seiner Grundlagenforschung die Basis für einen zuverlässigen Schnelltest gelegt. Der Physiker hat eine Analyse-Software entwickelt, die über Mustererkennung blitzschnell die Form großer Mengen von Zellen erkennt und klassifiziert.

„Das neuronale Netzwerk identifiziert mit künstlicher Intelligenz die Form der Blutzellen in der Probe anhand von charakteristischen Krümmungen und Wölbungen. Wir sind somit in der Lage, innerhalb von Sekunden Datensätze mit mehreren Tausend Zellen zu analysieren“, erklärt er.

Das Verfahren könnte daher der erste Schritt auf dem Weg zu einer schnellen Diagnose für Krankheiten sein, die mit einer Veränderung der Blutzellen-Form einhergehen. Hierzu muss jedoch noch weitergeforscht und -entwickelt werden. Die Software ist nicht nur bei Blutzellen anwendbar, sondern kann auch für andere Anwendungen angelernt werden.

Um sein neuronales Netzwerk zu trainieren, presste Kihm gewaschenes Blut, in dem nur noch rote Blutzellen schwimmen, durch hauchfeine Mikroröhrchen, die im Durchmesser kaum größer sind als die Zellen. Mit dem Hellfeldmikroskop beobachtete und klassifizierte er die Blutkörperchen. Anhand der so erfassten Datensätze erstellte Kihm mathematische Modelle und programmierte die Software zur Mustererkennung.

Die Volkswagen Stiftung (grant scheme Experiment!) und der Europäische Forschungsrat ERC (RELEVANCE sowie CoMMiTMenT) förderten die Forschungen. Derzeit ist Alexander Kihm bei einem Forschungsaufenthalt in Kanada an der McMaster University, um sein Verfahren weiterzuentwickeln.

Wissenschaftliche Ansprechpartner:

Kontakt für die Medien:
Alexander Kihm: E-Mail: alexander.kihm@uni-saarland.de
Prof. Dr. Christian Wagner: Tel.: 0681 302-3003; E-Mail: c.wagner@mx.uni-saarland.de
http://agwagner.physik.uni-saarland.de/

Originalpublikation:

Publikation: Kihm A, Kaestner L, Wagner C, Quint S (2018): Classification of red blood cell shapes in flow using outlier tolerant machine learning. PLoS Comp Biol 14(6): e1006278. https://doi.org/10.1371/journal.pcbi.1006278

Weitere Informationen:

Pressefotos für den kostenlosen Gebrauch finden Sie unter https://www.uni-saarland.de/pressefotos.html

Claudia Ehrlich | Universität des Saarlandes

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Wie benutzerfreundlich ist Virtual Reality?
21.05.2019 | Georg-August-Universität Göttingen

nachricht KI-Forschung in Deutschland: Landkarte der Plattform Lernende Systeme gibt Überblick
21.05.2019 | Lernende Systeme - Die Plattform für Künstliche Intelligenz

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Direkte Abbildung von Riesenmolekülen

Physiker am Max-Planck-Institut für Quantenoptik (MPQ) konnten riesige zweiatomige Moleküle erzeugen und mit einem hochaufgelösten Mikroskop direkt abbilden.

Die optische Auflösung einzelner Konstituenten herkömmlicher Moleküle ist aufgrund der kleinen Bindungslänge im Sub-Nanometerbereich bisher nicht möglich....

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: Geometrie eines Elektrons erstmals bestimmt

Physiker der Universität Basel können erstmals zeigen, wie ein einzelnes Elektron in einem künstlichen Atom aussieht. Mithilfe einer neu entwickelten Methode sind sie in der Lage, die Aufenthaltswahrscheinlichkeit eines Elektrons im Raum darzustellen. Dadurch lässt sich die Kontrolle von Elektronenspins verbessern, die als kleinste Informationseinheit eines zukünftigen Quantencomputers dienen könnten. Die Experimente wurden in «Physical Review Letters» und die Theorie dazu in «Physical Review B» veröffentlicht.

Der Spin eines Elektrons ist ein vielversprechender Kandidat, um als kleinste Informationseinheit (Qubit) eines Quantencomputers genutzt zu werden. Diesen Spin...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Optische Superlinsen aus Gold

Oldenburger Forscher entwickeln neues optisches Mikroskop mit extrem hoher Auflösung

Eine kegelförmige Spitze aus Gold bildet das Kernstück eines neuen, extrem leistungsfähigen optischen Mikroskops, das Oldenburger Wissenschaftler in der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Effizientes Wertstoff-Recycling aus Elektronikgeräten

24.05.2019 | Veranstaltungen

Früherkennung 2.0: Mit Präzisionsmedizin Screeningverfahren weiterentwickeln

23.05.2019 | Veranstaltungen

Kindermediziner tagen in Leipzig

22.05.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Schweißen ohne Wärme

24.05.2019 | Maschinenbau

Bakterien in fermentierten Lebensmitteln interagieren mit unserem Immunsystem

24.05.2019 | Biowissenschaften Chemie

Wie Einzelzellen und Zellverbünde beim Navigieren zusammenwirken

24.05.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics