Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Radar des Fraunhofer FHR analysiert Deorbiting-Systeme für mehr Nachhaltigkeit in der Raumfahrt

17.01.2019

Für weniger Schrott im All und mehr Sicherheit für Satelliten sollen künftig „Deorbiting“-Systeme sorgen. In die Raumfahrtsysteme integriert, sollen sie diese nach ihrem Missionsende gezielt abstürzen lassen. Die Selbstverpflichtung der Raumfahrtbetreiber zu diesen Maßnahmen und damit die zugehörigen Technologien sind noch relativ jung. Mit dem Weltraum-Beobachtungsradar TIRA unterstützt das Fraunhofer FHR Hersteller und Betreiber deshalb mit Analysen der Systeme im Einsatz und gibt so wichtige Hinweise zur ihrer korrekten Funktion und wie sie für ihre wichtige Aufgabe weiter optimiert werden können.

Ihre Weltraum-Radare TIRA und GESTRA stellen die Forscher mit Einsatzbeispielen bei der ESA Neo and Debris Detection Conference vom 22. bis 24.01.2019 in Darmstadt vor.


CAD-Modell des CNES-Satelliten Microscope mit zwei entfalteten Deorbiting-Segeln.

CNES


Radarabbildung des CNES-Satelliten MICROSCOPE mit zwei entfalteten Deorbiting-Segeln, aufgenommen mit dem TIRA-System des Fraunhofer FHR.

Fraunhofer FHR

Im Herbst 2018 hat die französische Raumfahrtagentur CNES bei ihrem Satelliten Microscope mit dem Entfalten von zwei neuartigen, passiven Deorbiting-Segeln, die wie Bremssegel funktionieren sollen, das Ende der Microscope-Mission eingeleitet. Sie bringen den Satelliten auf eine sich der Erde immer weiter nähernde Umlaufbahn, so dass er in 25 Jahren in der Erdatmosphäre verglühen soll.

Zu diesen Maßnahmen haben sich die Raumfahrtorganisationen freiwillig selbst verpflichtet, da Überreste früherer Weltraummissionen zunehmend unsere allgestützte Infrastruktur für Kommunikation, Navigation und vieles mehr bedrohen. Denn schon ein Zusammenstoß mit einem nur ein Zentimeter großen Teilchen kann einen aktiven Satelliten erheblich beschädigen oder zerstören. Mehr Nachhaltigkeit im All ist gefragt.

Nach und nach kommen nun die ersten Deorbiting-Systeme zum Einsatz. Diese Technologien sind noch relativ jung und die Kontrolle der korrekten Funktionsweise für Hersteller und Raumfahrtorganisationen ist daher umso wichtiger. Sie könnte durch Elemente wie Kameras auf dem Satelliten selbst erfolgen.

Das verursacht allerdings hohe Zusatzkosten und birgt ein gewisses Risiko, da diese Sensoren wartungsfrei die komplette Lebens- und Deorbiting-Dauer des Satelliten funktionstüchtig bleiben müssen.

Mit dem Weltraumbeobachtungsradar TIRA können die Wissenschaftler des Fraunhofer FHR Raumfahrtbetreiber jederzeit zuverlässig vom Boden aus bei der Analyse der Systeme unterstützen.

Beim CNES-Satelliten Microscope konnte TIRA auf wenige Zentimeter genau vermessen, dass sich beide 4,5 Meter langen Deorbiting-Segel vollständig entfaltet und im korrekten Winkel zum Satelliten ausgerichtet hatten. Zusammen mit den von CNES am Satelliten selbst angebrachten Drucksensoren konnte so der erste Erfolg dieses Deorbiting-Systems gefeiert werden. In weiteren Messungen wird TIRA untersuchen, ob die Segel weiterhin stabil bleiben und sich die Umlaufbahn des Satelliten verringern wird.

Auch wenn kein Kontakt mehr zum Weltraumsystem besteht, hilft das Fraunhofer FHR mit immer feineren Verfahren bei der Analyse von Fehlfunktionen und beim Erstellen von Wiedereintrittsprognosen ausgemusterter oder unkontrollierbar gewordener Raumfahrtsysteme wie der im Frühjahr 2018 abgestürzten chinesischen Raumstation Tiangong-1.

Bei der ESA Neo and Debris Detection Conference vom 22. bis 24.01.2019 in Darmstadt präsentieren die Forscher ihre sich ergänzenden Weltraumbeobachtungs-Radare TIRA und GESTRA sowohl in der Ausstellung, als auch in den Vortragssessions. Frau Dr. Sommer wird am 24.01.2019 u.a. die für die Eintrittsprognosen von Tiangong-1 wichtigen Eigenrotationsanalysen der chinesischen Raumstation vorstellen.

Das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR betreibt als eines der führenden europäischen Institute umfassende Forschung im Bereich Hochfrequenzphysik und Radartechnik. Kernthema der Forschungsarbeiten sind Sensoren für präziseste Abstands- oder Positionsbestimmung sowie bildgebende Systeme.

Das Anwendungsspektrum dieser Geräte reicht von Systemen für Aufklärung, Überwachung und Schutz bis hin zu echtzeitfähigen Sensoren für Verkehr und Navigation sowie Qualitätssicherung und zerstörungsfreies Prüfen.

Weitere Informationen:

https://www.fhr.fraunhofer.de/de/presse-medien/pressemitteilungen/2019/Deorbitin...

Jens Fiege | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lichtpulse bewegen Spins von Atom zu Atom

Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzpulsspektroskopie (MBI) und des Max-Planck-Instituts für Mikrostrukturphysik haben durch die Kombination von Experiment und Theorie die Frage gelöst, wie Laserpulse die Magnetisierung durch ultraschnellen Elektronentransfer zwischen verschiedenen Atomen manipulieren können.

Wenige nanometerdünne Filme aus magnetischen Materialien sind ideale Testobjekte, um grundlegende Fragestellungen des Magnetismus zu untersuchen. Darüber...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Höhere Treibhausgasemissionen durch schnelles Auftauen des Permafrostes

18.02.2020 | Geowissenschaften

Supermagnete aus dem 3D-Drucker

18.02.2020 | Maschinenbau

Warum Lebewesen schrumpfen

18.02.2020 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics