Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantencomputer: Vertrauen ist gut, Kontrolle ist besser

30.09.2013
Quantencomputer können Aufgaben lösen, an denen ein klassischer Computer scheitert.

Die Frage, wie die Ergebnisse dennoch mit konventionellen Methoden überprüft werden können, hat ein internationales Forschungsteam um Stefanie Barz und Philip Walther in einem Experiment an der Universität Wien beantwortet.


Darstellung der fundamentalen Frage: Wie können Quantenrechnungen überprüft werden, wenn diese mit einem klassischen Computer nicht berechnet werden können? Copyright: EQUINOX GRAPHICS


Darstellung von verschiedenen verschränkten Zuständen, die zum Testen von Quantenrechnungen verwendet werden können. Copyright: EQUINOX GRAPHICS

Um den Quantencomputer zu testen, bauten die WissenschafterInnen "Fallen" in die Rechenanfragen ein. Die Ergebnisse der Studie wurden im Journal "Nature Physics" publiziert.

Die Erschließung einzigartiger Quantenphänomene wie der Superposition und der Verschränkung legt den Grundstein für zukünftige Quantencomputer. Diese können viele Aufgaben schneller lösen als herkömmliche Rechenmaschinen. Allerdings führt dieser Vorteil auch zu einer neuartigen Herausforderung: Wie kann man sicher sein, dass das Ergebnis korrekt ist – wenn man dieses selbst mit einem konventionellen Computer nicht berechnen oder überprüfen kann?

Stefanie Barz und Philip Walther von der Universität Wien fanden mit TheoretikerInnen aus Edinburgh und Singapur die passenden Methoden, um einen Quantencomputer zu testen, ohne einen weiteren Quantencomputer zu Hilfe zu nehmen. Die ForscherInnen haben in einem neuartigen Experiment gezeigt, dass dies möglich ist.

Wie man dem Quantencomputer eine Falle stellen kann

Um den Quantencomputer zu testen, bauten die WissenschafterInnen "Fallen" in die Rechenanfragen ein. Diese Fallen sind kleine Zwischenberechnungen, bei denen der Nutzer das Ergebnis im Vorhinein kennt. Tut der Quantencomputer nicht das, was er soll, so zeigt die Falle ein anderes als das erwartete Ergebnis. Der Nutzer kann dadurch überprüfen, wie zuverlässig der Quantencomputer arbeitet. Je mehr Fallen der Nutzer verwendet, desto besser kann sichergestellt werden, dass der Quantencomputer auch tatsächlich korrekt rechnet.

"Wir haben den Test so konstruiert, dass der Quantenrechner die Falle nicht von gewöhnlichen Rechenanfragen unterscheiden kann", erklärt Stefanie Barz, die Hauptautorin der Studie: "Dies ist eine wichtige Voraussetzung um zu garantieren, dass der Quantencomputer das Testergebnis nicht fälschen kann." Die ForscherInnen haben auch getestet, ob der Quantenrechner tatsächlich auf Quantenressourcen zurückgreift. Dadurch können sie sicherstellen, dass der Quantencomputer nicht nur hohe Rechenleistungen vortäuscht, sondern auch wirklich über diese verfügt.

Photonen – das Umsetzen der Idee in die Tat

Das Experiment der ForscherInnengruppe an der Fakultät für Physik basiert auf einem optischen Quantencomputer, der einzelne Lichtteilchen als Datenträger verwendet. "Optische Quantencomputer sind ideal, um die Ergebnisse zu überprüfen. Da die Lichtteilchen mobil sind, können sie genutzt werden, um mit dem Computer zu interagieren", so Philip Walther. Die ForscherInnen sind sich auch einig, dass die Ergebnisse dieses Experiments sowohl für zukünftige Kontrollmechanismen von Quantencomputern wichtig sind, als auch um komplexe Quantenphänomene zu untersuchen.

Publikation in "Nature Physics"
Experimental verification of quantum computation: Stefanie Barz, Joseph F. Fitzsimons, Elham Kashefi, Philip Walther. Nature Physics, September 2013

Doi: 10.1038/nphys2763

Internationale Kooperation und Förderung

Diese Arbeit wurde ausgeführt als Kooperation von WissenschafterInnen der Universität Wien, der University of Edinburgh in UK, des Centre for Quantum Technologies an der National University of Singapore und der Singapore University of Technology and Design. Fördergeber waren der FWF (SFB-FoQuS, START Y585-N20), die Europäische Kommission (QU-ESSENCE und QUILMI), das ERA-Net CHISTERA Projekt (QUASAR), der WWTF (ICT12-041), das Air Force Office of Scientific Research (FA8655-11-1), und teilweise die Singapore National Research Foundation and the Ministry of Education (NRF-NRFF2013-01) sowie das UK Engineering and Physical Sciences Research Council (EP/E059600/1).

Wissenschaftlicher Kontakt
Dr. Stefanie Barz
Quantenoptik, Quantennanophysik
und Quanteninformation
Fakultät für Physik
Universität Wien
1090 Wien, Boltzmanngasse 5
T +43-1-4277-725 67
stefanie.barz@univie.ac.at
http://walther.quantum.at
http://quantum.univie.ac.at
Rückfragehinweis
Mag. Alexandra Frey
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 33
M +43-664-602 77-175 33
alexandra.frey@univie.ac.at

Michaela Wein | Universität Wien
Weitere Informationen:
http://medienportal.univie.ac.at/presse
http://quantum.univie.ac.at

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Metamolds: Eine Gussform für eine Gussform
20.08.2018 | Institute of Science and Technology Austria

nachricht Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker
17.08.2018 | Institute of Science and Technology Austria

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Mischung macht‘s: Jülicher Forscher entwickeln schnellladefähige Festkörperbatterie

Mit Festkörperbatterien sind aktuell große Hoffnungen verbunden. Sie enthalten keine flüssigen Teile, die auslaufen oder in Brand geraten könnten. Aus diesem Grund sind sie unempfindlich gegenüber Hitze und gelten als noch deutlich sicherer, zuverlässiger und langlebiger als herkömmliche Lithium-Ionen-Batterien. Jülicher Wissenschaftler haben nun ein neues Konzept vorgestellt, das zehnmal größere Ströme beim Laden und Entladen erlaubt als in der Fachliteratur bislang beschrieben. Die Verbesserung erzielten sie durch eine „clevere“ Materialwahl. Alle Komponenten wurden aus Phosphatverbindungen gefertigt, die chemisch und mechanisch sehr gut zusammenpassen.

Die geringe Stromstärke gilt als einer der Knackpunkte bei der Entwicklung von Festkörperbatterien. Sie führt dazu, dass die Batterien relativ viel Zeit zum...

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Quantenverschränkung erstmals mit Licht von Quasaren bestätigt

20.08.2018 | Physik Astronomie

1,6 Millionen Euro für den Aufbau einer Forschungsgruppe zu Quantentechnologien

20.08.2018 | Förderungen Preise

IHP-Technologie darf in den Weltraum fliegen

20.08.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics