Physiker entwickeln perfekte Leiter aus Graphen Nanostrukturen

Sie werden immer schneller und immer leistungsfähiger, doch sie benötigen auch immer mehr Strom. Überall, wo Computer zum Einsatz kommen, steigt der Energieverbrauch. Die Leistungsaufnahme einer einzigen modernen CPU (Central Processing Unit) liegt in der Größenordnung von 100 Watt, die quasi komplett in ungenutzter Wärme umgewandelt wird und zudem durch aktive Kühleinheiten an die Umgebung abgegeben werden muss.

Sie werden immer schneller und immer leistungsfähiger, doch sie benötigen auch immer mehr Strom. Überall, wo Computer zum Einsatz kommen, steigt der Energieverbrauch. Die Leistungsaufnahme einer einzigen modernen CPU (Central Processing Unit) liegt in der Größenordnung von 100 Watt, die quasi komplett in ungenutzter Wärme umgewandelt wird und zudem durch aktive Kühleinheiten an die Umgebung abgegeben werden muss. Das Wärmeproblem belastet nicht nur die Umwelt, sondern limitiert auch die weitere Miniaturisierung und höhere Taktfrequenzen. Ein Ausweg aus diesem Dilemma wären Leiterbahnen, die keinen elektrischen Widerstand aufweisen, d.h. ballistisch sind.

Physikern der Leibniz Universität Hannover ist es nun in Kooperation mit amerikanischen Wissenschaftlern erstmals gelungen, solche ballistischen Nanostrukturen in definierter Weise herzustellen und umfassend zu charakterisieren, wie das Journal Nature in seiner aktuellen Ausgabe berichtet: http://www.nature.com/nature/journal/vaop/ncurrent/full/nature12952.html .

Durch einfaches Heizen eines nanostrukturierten Siliziumcarbid Kristalls entstehen an den Kanten kleinste Graphen-Strukturen. Unter Graphen versteht man eine einatomar dünne Kohlenstofflage. „Die durch den Rand dieser Graphen Nanostrukturen bedingte spezielle elektronische Struktur unterdrückt dabei jegliche Streuung der Elektronen, so dass das Material keinen Wiederstand aufweist“, erklärt Prof. Christoph Tegenkamp vom Institut für Festkörperphysik, Leiter der Untersuchungen am Institut für Festkörperphysik in Hannover.

An diesen Strukturen sind mittels eines in Niedersachsen einmaligen Großgerätes, einem sog. 4-Spitzen STM-SEM, systematisch Transportmessungen auf der Nanoskala durchgeführt worden. „Für etwaige zukünftige Technologien ist dabei besonders interessant, dass dieser verlustfreie Transport auch bei Raumtemperatur beobachtet werden konnte“, sagt M. Sc. Jens Baringhaus, der sich in seiner Promotion mit diesem Materialsystem beschäftigt.

Das Verfahren birgt großes Potenzial für die Zukunft. Stimmen die theoretischen Berechnungen, sollten die Ränder auch magnetische Eigenschaften haben. Die Kompatibilität des neuen Trägermaterials mit der herkömmlichen Silizium-Technologie sowie die Möglichkeit flexibler Strukturierung des Materials erlaubt auch kompliziertere Graphen-Draht Geometrien zu realisieren. Erste Transistor Prototypen sind von den Kooperationspartnern um Prof. Walt de Heer vom Georgia Institute of Technology (USA) bereits erfolgreich hergestellt worden.

Bilder sind auf Anfrage erhältlich.

Hinweis an die Redaktion:
Für weitere Informationen steht Ihnen Prof. Christoph Tegenkamp, Institut für Festkörperphysik an der Leibniz Universität Hannover, unter Telefon +49 511 762 2542 oder per E-Mail unter tegenkamp@fkp.uni-hannover.de gern zur Verfügung.

Media Contact

Mechtild Freiin v. Münchhausen idw

Alle Nachrichten aus der Kategorie: Informationstechnologie

Neuerungen und Entwicklungen auf den Gebieten der Informations- und Datenverarbeitung sowie der dafür benötigten Hardware finden Sie hier zusammengefasst.

Unter anderem erhalten Sie Informationen aus den Teilbereichen: IT-Dienstleistungen, IT-Architektur, IT-Management und Telekommunikation.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer