Optisches Chaos zur Kontrolle von Licht

Abbildungen: Zeichnungen von Yin Feng und Xuejun Huang. Bildunterschrift: Illustration des Kopplungsprozesses zwischen einem geraden Wellenleiter und einem Lichtspeicher. Der Fahrradfahrer versucht, dem schnell fahrenden Auto Lichtpakete zu übergeben. Oben: Ohne Chaos ist die Kopplung ineffizient. Unten: Mittels Chaos können die Lichtpakete effizient übergeben werden.

Physiker der Otto-von-Guericke-Universität Magdeburg haben gemeinsam mit Kollegen aus China und den USA erstmals eine Methode entwickelt, bei der Licht so kontrolliert gesteuert wird, dass es breitbandig und schnell in einen Lichtspeicher, einen sogenannten Mikroresonator, eingespeist und wieder entnommen werden kann.

Dieses Verfahren könnte künftig die bisher auf der Mobilität von Elektronen basierende Weiterleitung digitaler Informationen durch kontrolliert gelenkte Lichtwellen ersetzen. Im Gegensatz zu den sich relativ langsam und mit Reibungsverlust bewegenden Elektronen wäre Licht wesentlich schneller unterwegs.

Die Wissenschaftler um Prof. Jan Wiersig haben zusammen mit den Gruppen von Prof. Yun-Feng Xiao (Peking University, China), Prof. Marko Loncar (Harvard University, USA) und Prof. Lan Yang (Washington University, USA) ihre Forschungsergebnisse soeben in dem renommierten internationalen Fachjournal Science veröffentlicht.

„Extrem kompakte optische Schaltkreise, in denen Licht statt Elektronen zur Datenübertragung verwendet wird, könnten künftig die Kommunikation und Datenverarbeitung revolutionieren. Aber die Kontrolle von Licht stellt eine große Herausforderung dar,“ so Prof. Jan Wiersig.

„Das Hauptproblem dabei ist, dass das Licht in den verschiedenen Bestandteilen des Schaltkreises, z. B. im Lichtspeicher oder auch im Wellenleiter, was dem Draht in einem elektrischen Schaltkreis entspricht, unterschiedliche Geschwindigkeiten hat. Das bedeutet, dass es nicht effizient und kontrolliert von einem Bestandteil des Schaltkreises zum nächsten wechseln kann.“

Um die unterschiedlichen Geschwindigkeiten des Lichts in dem Wellenleiter und in einem angrenzenden ringförmigen Lichtspeicher aneinander anzugleichen und somit eine schnelle Übergabe von Lichtpaketen in den Speicher zu ermöglichen, benutzten die Wissenschaftler erstmals ein besonderes Verfahren: Sie verformten die ringförmige Struktur des Lichtspeichers leicht und erzeugten damit ein sogenanntes optisches Chaos.

Das äußert sich darin, dass es zu schnellen Schwankungen der Geschwindigkeit des Lichts im Lichtspeicher kommt. Diese schnellen Schwankungen haben zur Folge, dass die unterschiedlichen Geschwindigkeiten im Wellenleiter und Lichtspeicher für einen sehr kurzen Moment gleich und synchronisiert sind. Diese extrem kurze Zeitspanne reicht aus, um Licht sehr schnell aus dem Wellenleiter in den Lichtspeicher einzuspeisen oder auch wieder zu entnehmen. Mit diesem Verfahren könnten künftig Licht statt Elektronen genutzt werden, um sehr große Datenmengen breitbandig in optischen Schaltkreisen zu verarbeiten.

Abbildungen: Zeichnungen von Yin Feng und Xuejun Huang.
Bildunterschrift: Illustration des Kopplungsprozesses zwischen einem geraden Wellenleiter und einem Lichtspeicher. Der Fahrradfahrer versucht, dem schnell fahrenden Auto Lichtpakete zu übergeben. Links: Ohne Chaos ist die Kopplung ineffizient. Rechts: Mittels Chaos können die Lichtpakete effizient übergeben werden.

Kontakt für die Medien: Prof. Dr. rer. nat. habil. Jan Wiersig, Institut für Theoretische Physik der Otto-von-Guericke-Universität Magdeburg, Tel.: +49 391 67-1867, E-Mail: jan.wiersig@ovgu.de

http://link.ovgu.de/originalstudie

Media Contact

Katharina Vorwerk idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Informationstechnologie

Neuerungen und Entwicklungen auf den Gebieten der Informations- und Datenverarbeitung sowie der dafür benötigten Hardware finden Sie hier zusammengefasst.

Unter anderem erhalten Sie Informationen aus den Teilbereichen: IT-Dienstleistungen, IT-Architektur, IT-Management und Telekommunikation.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer