Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mathematisches Modell simuliert erfolgreich die Entwicklung von Mittel- und Hinterhirn

09.02.2010
Systembiologen um Fabian Theis vom Helmholtz Zentrum München haben in einem Computermodell die Genexpression im Bereich der Mittel-Hinterhirn-Grenze des Neuralrohrs im Maus-Embryo erfolgreich simuliert.

Damit ist ein weiterer Schritt zum Verständnis des zeitlichen und räumlichen Ablaufs der Gehirnentwicklung auf System-Ebene gelungen. Das mathematische Modell ließe sich nach Ansicht der Wissenschaftler auch andere biologische Prozesse der Muster-Bildung einsetzen. (PLoS Computational Biology)

Wissenschaftler der Institute für Bioinformatik und Systembiologie (IBIS) sowie für Entwicklungsgenetik (IDG) am Helmholtz Zentrum München haben gemeinsam ein mathematisches Modell der Gen-Aktivitäten im Bereich der Grenze zwischen Mittel- und Hinterhirn erstellt. Es zeigt den zeitlichen und räumlichen Verlauf der Entwicklung vom achten bis zehnten Tag der Embryonalentwicklung bei der Maus. "Unser Modell kann als eines der ersten die natürlichen Abläufe der Gehirnentwicklung qualitativ korrekt simulieren", sagt Fabian Theis.

Die Gehirnentwicklung bei Wirbeltieren beginnt schon sehr früh im Embryo über verschiedene Vorstufen. Die Grenze zwischen dem späteren Mittel- und Hinterhirn ist dabei besonders wichtig. Experimentell unterscheiden sich die beide Bereiche hinsichtlich der wichtigsten acht Gene, die dort aktiv sind - diese Daten wurden dem mathematischen Modell zugrunde gelegt und in ein qualitatives Computermodell des Regulations-Netzwerks umgesetzt. Die Forscher gingen zunächst von der vereinfachten Annahme aus, dass die Gene jeweils aktiv sind oder nicht.

Schon in diesem qualitativen Modell zeigten sich Zusammenhänge, die für die Aufrechterhaltung der Mittel-Hinterhirn-Grenze erforderlich sind. Eine der später experimentell bestätigten Erkenntnisse betrifft zwei Signalproteine: Fgf8 ist für die andauernde Expression von Wnt1 zwar notwendig, ruft diese aber nicht ursächlich hervor. Das weiterentwickelte Modell bezieht die Menge der Genexpression mit ein und simuliert die Vorgänge der Embryonalentwicklung zwischen Tag 8 und Tag 10 zeitlich und räumlich korrekt.

Nach weiteren erfolgreichen Simulationen sind die Helmholtz-Forscher nicht nur davon überzeugt, dass ihre Methode auf weitere biologische Prozesse der Muster-Bildung ausgeweitet werden kann, sondern auch, dass qualitative Versuchsergebnisse eine geeignete Grundlage für mathematische Modelle bieten.

Weitere Informationen:

Originalveröffentlichung: Wittmann DM, Blöchl F, Trümbach D, Wurst W, Prakash N, et al. (2009) Spatial Analysis of Expression Patterns Predicts Genetic Interactions at the Mid-Hindbrain Boundary. PLoS Comput Biol 5(11): e1000569. doi:10.1371/journal.pcbi.1000569, http://www.ploscompbiol.org/doi/pcbi.1000569

Das Helmholtz Zentrum München ist das deutsche Forschungszentrum für Gesundheit und Umwelt. Als führendes Zentrum mit der Ausrichtung auf Environmental Health erforscht es chronische und komplexe Krankheiten, die aus dem Zusammenwirken von Umweltfaktoren und individueller genetischer Disposition entstehen. Das Helmholtz Zentrum München beschäftigt rund 1700 Mitarbeiterinnen und Mitarbeiter. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens auf einem 50 Hektar großen Forschungscampus. Das Helmholtz Zentrum München gehört der größten deutschen Wissenschaftsorganisation, der Helmholtz-Gemeinschaft an, in der sich 16 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit insgesamt 26500 Beschäftigten zusammengeschlossen haben.

Ansprechpartner für Medienvertreter

Sven Winkler, Leiter Abteilung Kommunikation Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt
Tel.: 089-3187-3946
sven.winkler@helmholtz-muenchen.de

Michael van den Heuvel | idw
Weitere Informationen:
http://www.ploscompbiol.org/doi/pcbi.1000569
http://www.helmholtz-muenchen.de

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Digitale Assistenzsysteme in der Produktion
19.09.2019 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht KI ermöglicht klinische Bildgebungsanalyse in der Augenheilkunde
19.09.2019 | Universitätsspital Bern

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Nervenzellen feuern Hirntumorzellen zum Wachstum an

Heidelberger Wissenschaftler und Ärzte beschreiben aktuell im Fachjournal „Nature“, wie Nervenzellen des Gehirns mit aggressiven Glioblastomen in Verbindung treten und so das Tumorwachstum fördern / Mechanismus der Tumor-Aktivierung liefert Ansatzpunkte für klinische Studien

Nervenzellen geben ihre Signale über Synapsen – feine Zellausläufer mit Kontaktknöpfchen, die der nächsten Nervenzelle aufliegen – untereinander weiter....

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour für die zeitaufgelöste Kristallographie

Ein Forschungsteam vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD), der Universität Hamburg und dem European Molecular Biology Laboratory (EMBL) hat eine neue Methode entwickelt, um Biomoleküle bei der Arbeit zu beobachten. Sie macht es bedeutend einfacher, enzymatische Reaktionen auszulösen, da hierzu ein Cocktail aus kleinen Flüssigkeitsmengen und Proteinkristallen angewandt wird. Ab dem Zeitpunkt des Mischens werden die Proteinstrukturen in definierten Abständen bestimmt. Mit der dadurch entstehenden Zeitraffersequenz können nun die Bewegungen der biologischen Moleküle abgebildet werden.

Die Funktionen von Biomolekülen werden nicht nur durch ihre molekularen Strukturen, sondern auch durch deren Veränderungen bestimmt. Mittels der...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

92. Neurologie-Kongress: Mehr als 6500 Neurologen in Stuttgart erwartet

20.09.2019 | Veranstaltungen

Frische Ideen zur Mobilität von morgen

20.09.2019 | Veranstaltungen

Thermodynamik – Energien der Zukunft

19.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ferroelektrizität verbessert Perowskit-Solarzellen

20.09.2019 | Energie und Elektrotechnik

HD-Mikroskopie in Millisekunden

20.09.2019 | Biowissenschaften Chemie

Kinobilder aus lebenden Zellen: Forscherteam aus Jena und Bielefeld 
verbessert superauflösende Mikroskopie

20.09.2019 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics