Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Graphen-Photodetektoren brechen Geschwindigkeitsrekord

03.01.2017

Die Grenzen der Datenübertragungsraten sind noch lange nicht erreicht, wie Forscher_innen der TU Wien in Zusammenarbeit mit der AMO GmbH in Deutschland zeigen konnten. Es gelang den weltweit schnellsten Graphen-basierten Photodetektor mit einer Bandbreite von mehr als 65 GHz zu entwickeln.

Datenkommunikation der nächsten Generation


SEM - Bild eines solchen Graphen-Photodetektors: Das Licht wird von einem Streifenwellenleiter über einen Modenkoppler in den Schlitzwellenleiter, auf dem die Graphenschicht liegt, eingekoppelt. Das in der Graphenschicht erzeugte elektrische Signal wird an den beiden Kontakten (Source & Drain) gemessen.

Da die Menge an Daten stetig steigt, sind neue Konzepte für die Datenübertragung gefragt. Derzeit beruhen moderne Kommunikationssysteme auf der Übertragung von Daten mittels Glasfasern. Zur Datenverarbeitung hingegen werden Computerchips verwendet, die elektrisch funktionieren. Die Schnittstelle zwischen diesen beiden Welten bilden Photodetektoren, die das optische Signal in ein elektrisches umwandeln.

Die Anforderungen an solche Detektoren sind hoch: Sie müssen eine hohe Geschwindigkeit aufweisen, dabei aber auch klein, kompakt und möglichst einfach integrierbar sein. Gegenwärtig basieren Übertragungssysteme auf Materialien wie Germanium oder Indiumphosphid, die jedoch nur schwer in die klassische Siliziumtechnologie integriert werden können. Zusätzlich kommen sie durch ihre physikalischen Eigenschaften nun auch schon an die Grenzen ihrer Leistungsfähigkeit.

Einzigartiges Material

Graphen, Kohlenstoff in zweidimensionaler Form, besitzt außergewöhnliche Eigenschaften, die das Material zu einem idealen Kandidaten zur Detektion von Licht machen. Graphen weist ein extrem breitbandiges Absorptionsspektrum auf, das heißt, es kann alle Wellenlängen detektieren.

Im Vergleich dazu kann beispielsweise Germanium nur bestimmte Wellenlängen absorbieren und ist dadurch in der Anwendung eingeschränkt. Graphen zeichnet sich besonders dadurch aus, dass die Umwandlung von Licht in ein elektrisches Signal bemerkenswert schnell vonstatten geht. Zusätzlich erlaubt die zweidimensionale Struktur eine problemlose Integration in die bestehende Siliziumtechnologie.

Und es geht noch schneller

Aus der Forschung ist bereits bekannt, dass Graphen das Material der Wahl für integrierte Detektoren ist. Forscher_innen der TU Wien haben nun in Zusammenarbeit mit der AMO GmbH ein neues Detektorkonzept entwickelt, das alle Rekorde bricht. Der Detektor basiert auf einer speziellen Wellenleiterstruktur:

Das Licht wird in zwei Silizium Streifen geführt, die durch eine Aussparung getrennt sind. Über dieser Wellenleiterstruktur ist eine Graphenschicht platziert, die elektrisch kontaktiert ist. Der Wellenleiter wird sowohl dazu benutzt das Licht einzukoppeln als auch über Elektroden die elektrischen Eigenschaften der Graphenschicht zu steuern. Das absorbierte Licht erzeugt eine Spannung in der Graphenschicht auf Grund des photothermolektrischen Effekts, die an den Kontakten gemessen werden kann.

Dieses Konzept erlaubt es, die Sensitivität elektrisch zu steuern, ohne die Geschwindigkeit des Detektors zu beeinflussen. Der Detektor besitzt eine Bandbreite von 65 GHz und ermöglicht eine Datenrate von mindestens 100 Gbit/s.

„Die gemessene Bandbreite des Detektors ist durch den Messaufbau limitiert. Dies zeigt uns, dass es noch Luft nach oben gibt“, erklärt Simone Schuler vom Institut für Photonik der TU Wien.

Originalpublikation: Controlled Generation of p–n Junction in a Waveguide Integrated Graphene Photodetector. NanoLetters 2016, 16, 7107-7112 | DOI: 10.1021/acs.nanolett.6b03374
http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.6b03374

Webtipp: Graphene Flagship: http://graphene-flagship.eu/graphene-photodetectors-set-speed-record

Bilderdownload: https://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2017/graphen_photodetektoren

Rückfragehinweis:
Dipl.-Ing. Simone Schuler
Technische Universität Wien
Institut für Photonik
Gußhausstr. 27-29, 1040 Wien
T: +43-1-58801-38726
simone.schuler@tuwien.ac.at

Aussender:
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Resselgasse 3, Stiege 2, 2. Stock, 1040 Wien
T: +43-1-58801-41024
pr@tuwien.ac.at

Information & Communication Technology ist – neben Computational Science & Engineering, Quantum Physics & Quantum Technologies, Materials & Matter sowie Energy & Environment – einer von fünf Forschungsschwerpunkten der Technischen Universität Wien. Forschung und Entwicklung werden mit einer Vielzahl an interdisziplinären Projekten verfolgt. Im Fokus steht das Internet. Neben den technischen Grundlagen wird auch die wirtschaftliche, soziale und kulturelle Einbettung der Informations- und Kommunikationstechnologien untersucht.

TU Wien - Mitglied der TU Austria

www.tuaustria.at 

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Digitaler Denker: Argument-Suchmaschine hilft bei der Meinungsbildung
22.01.2019 | Universität Paderborn

nachricht Forscher entwickeln Datenleak-Frühwarnsystem
22.01.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Zweigesichtige Stammzellen produzieren Holz und Bast

Heidelberger Forscher untersuchen einen der wichtigsten Wachstumsprozesse auf der Erde

Für einen der wichtigsten Wachstumsprozesse auf der Erde – die Holzbildung – sind sogenannte zweigesichtige Stammzellen verantwortlich: Sie bilden nicht nur...

Im Focus: Bifacial Stem Cells Produce Wood and Bast

Heidelberg researchers study one of the most important growth processes on Earth

So-called bifacial stem cells are responsible for one of the most critical growth processes on Earth – the formation of wood.

Im Focus: Energizing the immune system to eat cancer

Abramson Cancer Center study identifies method of priming macrophages to boost anti-tumor response

Immune cells called macrophages are supposed to serve and protect, but cancer has found ways to put them to sleep. Now researchers at the Abramson Cancer...

Im Focus: Klassisches Doppelspalt-Experiment in neuem Licht

Internationale Forschergruppe entwickelt neue Röntgenspektroskopie-Methode basierend auf dem klassischen Doppelspalt-Experiment, um neue Erkenntnisse über die physikalischen Eigenschaften von Festkörpern zu gewinnen.

Einem internationalen Forscherteam unter Führung von Physikern des Sonderforschungsbereichs 1238 der Universität zu Köln ist es gelungen, eine neue Variante...

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Führende Röntgen- und Nanoforscher treffen sich in Hamburg

22.01.2019 | Veranstaltungen

Smarte Sensorik für Mobilität und Produktion 4.0 am 07. Februar 2019 in Oldenburg

18.01.2019 | Veranstaltungen

16. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

17.01.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Zweigesichtige Stammzellen produzieren Holz und Bast

22.01.2019 | Biowissenschaften Chemie

Wie tickt die rote Königin?

22.01.2019 | Biowissenschaften Chemie

Digitaler Denker: Argument-Suchmaschine hilft bei der Meinungsbildung

22.01.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics