Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Arbeitsspeicher auf Energiediät: Forscher entwickeln Grundlage für neuartigen Speicherchip

03.01.2017

Speicherchips zählen zu den Grundbausteinen eines Computers. Denn ohne seinen Arbeitsspeicher, in den der Prozessor seine Bits kurzzeitig ablegt, kann kein Rechner funktionieren. Forscher aus Dresden und Basel haben nun die Grundlagen eines neuartigen Konzepts für Speicherchips geschaffen. Es besitzt das Potenzial, deutlich weniger Energie zu verbrauchen als die bisherigen Arbeitsspeicher – wichtig nicht nur für mobile Anwendungen, sondern auch für Big-Data-Rechenzentren. Die Ergebnisse werden in der aktuellen Ausgabe des Fachmagazins „Nature Communications“ präsentiert.

Die derzeit geläufigen rein elektrischen Speicherchips haben einen entscheidenden Nachteil: „Diese Speicher sind flüchtig, so dass ihr Zustand permanent erneuert werden muss“, erläutert Tobias Kosub, Erstautor der Studie und Post-Doc am Helmholtz-Zentrum Dresden-Rossendorf (HZDR). „Und das verbraucht relativ viel Energie.“


Der Prototyp des neuartigen Speicherchips. Er besteht aus einer dünnen Chromoxid-Schicht zum Speichern, auf der die Physiker eine ultradünne Platinschicht aufbringen, die zum Auslesen genutzt wird.

Abbildung: T. Kosub/HZDR

Die Folgen bekommen unter anderem große Rechenzentren zu spüren: Zum einen wachsen ihre Stromrechnungen mit steigender Leistung. Zum anderen heizen sich die Chips aufgrund ihres Energieverbrauchs immer stärker auf. Den Datenzentren fällt es immer schwerer, diese Hitze abzuführen – so dass manche Cloud-Betreiber sogar dazu übergehen, ihre Rechnerfarmen in kalten Regionen zu errichten.

Es gibt eine Alternative zu den elektrischen Speicherchips: So genannte MRAMs speichern ihre Daten magnetisch, sie müssen also nicht ständig aufgefrischt werden. Es braucht jedoch relativ große Ströme, um die Daten in die Speicher zu schreiben. Das aber mindert die Zuverlässigkeit: „Kommt es beim Schreib- oder Leseprozess zu Störungen, drohen sie vorschnell zu verschleißen und kaputtzugehen“, sagt Kosub.

Elektrische Spannung statt Strom

Deshalb tüftelt die Fachwelt schon länger an MRAM-Alternativen. Besonders aussichtsreich erscheint eine Materialklasse namens magnetoelektrische Antiferromagnete. Statt durch Strom werden sie durch eine elektrische Spannung aktiviert. Das Problem: „Diese Materialien lassen sich nicht ohne weiteres ansteuern“, erklärt HZDR-Gruppenleiter Dr. Denys Makarov. „Es ist schwierig, sie mit Daten zu beschreiben und wieder auszulesen.“

Bisher wurde angenommen, dass man diese magnetoelektrischen Antiferromagneten nur indirekt über Ferromagneten auslesen kann, was jedoch viele der Vorteile zunichte macht. Das Ziel ist es also, einen rein antiferromagnetischen magnetoelektrischen Speicher (AF-MERAM) zu erzeugen.

Genau das ist den Forscherteams aus Dresden und Basel nun gelungen. Sie entwickelten einen AF-MERAM-Prototypen auf der Basis einer hauchdünnen Schicht aus Chromoxid. Diese ist – wie die Füllung eines Sandwiches – zwischen zwei nanometerdünnen Elektroden eingepasst. Legt man an diese eine Spannung an, „kippt“ das Chromoxid in einen anderen magnetischen Zustand – das Bit ist geschrieben. Der Clou: Es genügt eine Spannung von wenigen Volt.

„Gegenüber anderen Konzepten konnten wir die Spannung um den Faktor 50 reduzieren“, sagt Kosub. „Dadurch können wir ein Bit schreiben, ohne dass das Bauteil viel Energie verbraucht und sich aufheizt.“ Eine besondere Herausforderung lag darin, das eingeschriebene Bit wieder auslesen zu können.

Dazu brachten die Physiker eine nanometerfeine Platinschicht auf dem Chromoxid an. Das Platin ermöglicht das Auslesen über ein spezielles elektrisches Phänomen – den anomalen Hall-Effekt. Das eigentliche Signal ist zwar sehr klein und wird durch Störsignale überlagert. „Doch wir konnten eine Methode entwickeln, die das Gewitter der Störsignale unterdrückt und es erlaubt, an das Nutzsignal heranzukommen“, beschreibt Makarov.

„Das war der eigentliche Durchbruch.“ Die Ergebnisse sehen sehr vielversprechend aus, wie Prof. Oliver G. Schmidt vom beteiligten Leibniz-Institut für Festkörper- und Werkstoffforschung (IFW) einschätzt: „Es wird spannend sein, zu verfolgen, wie sich dieser neue Ansatz im Verhältnis zur etablierten Silizium-Technologie in Zukunft positionieren wird.“ Nun sind die Forscher dabei, das Konzept weiterzuentwickeln.

„Bislang funktioniert das Material zwar bei Raumtemperatur, aber nur in einem kleinen Fenster“, erläutert Kosub. „Indem wir das Chromoxid gezielt verändern, wollen wir den Bereich deutlich erweitern.“ Einen wichtigen Beitrag dazu liefern die Kollegen des Swiss Nanoscience Institute und der Abteilung Physik an der Universität Basel. Sie haben eine neue Methode entwickelt, mit der sich die magnetischen Eigenschaften des Chromoxids zum ersten Mal auf der Nanoskala abbilden lassen. Ferner wollen die Experten mehrere Speicherelemente auf einem Chip integrieren.

Bislang wurde nur ein einzelnes Element realisiert, mit dem sich lediglich ein Bit speichern lässt. Der nächste Schritt – und ein wichtiger zu einer möglichen Anwendung – ist es, ein Array aus mehreren Elementen zu konstruieren. „Im Prinzip ließen sich solche Speicherchips mit den üblichen Verfahren der Computerhersteller fertigen“, sagt Makarov. „Nicht zuletzt deshalb zeigt die Industrie großes Interesse an solchen Bauteilen.“

Publikation:
T. Kosub, M. Kopte, R. Hühne, P. Appel, B. Shields, P. Maletinsky, R. Hübner, M. O. Liedke, J. Fassbender, O. G. Schmidt, D. Makarov: Purely Antiferromagnetic Magnetoelectric Random Access Memory, in Nature Communications, 2016 (DOI: 10.1038/NCOMMS13985)

Weitere Informationen:
Dr. Tobias Kosub | Dr. Denys Makarov
Institut für Ionenstrahlphysik und Materialforschung am HZDR
Tel. +49 351 260-2900 | 3273
E-Mail: t.kosub@hzdr.de | d.makarov@hzdr.de

Medienkontakt:
Simon Schmitt | Wissenschaftsredakteur
Tel. +49 351 260-3400 | E-Mail: s.schmitt@hzdr.de

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Dabei stehen folgende Fragen im Fokus:
- Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
- Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
- Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
Zur Beantwortung der wissenschaftlichen Fragen werden Großgeräte mit einzigartigen Experimentiermöglichkeiten eingesetzt, die auch externen Messgästen zur Verfügung stehen. Das HZDR ist Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. Es hat fünf Standorte und beschäftigt rund 1.100 Mitarbeiter – davon rund 500 Wissenschaftler inklusive 150 Doktoranden.

Weitere Informationen:

https://www.hzdr.de/presse/speicherchip

Dr. Christine Bohnet | Helmholtz-Zentrum Dresden-Rossendorf

Weitere Berichte zu: Arbeitsspeicher Chromoxid HZDR Helmholtz-Zentrum Speicherchip Störsignale

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Mixed Reality für die Industrie: Hochschulen und Industrieunternehmen entwickeln gemeinsam
10.12.2018 | Fachhochschule St. Pölten

nachricht Testen sicherheitsrelevanter Hardware: Ingenieure zeigen, nicht alle Fehler beeinflussen Software
10.12.2018 | Technische Universität Kaiserslautern

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuartige Lasertechnik für chemische Sensoren in Mikrochip-Größe

Von „Frequenzkämmen“ spricht man bei speziellem Laserlicht, das sich optimal für chemische Sensoren eignet. Eine revolutionäre Technik der TU Wien erzeugt dieses Licht nun viel einfacher und robuster als bisher.

Ein gewöhnlicher Laser hat genau eine Farbe. Alle Photonen, die er abstrahlt, haben genau dieselbe Wellenlänge. Es gibt allerdings auch Laser, deren Licht...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Neue Methode verpasst Mikroskop einen Auflösungsschub

Verspiegelte Objektträger ermöglichen jetzt deutlich schärfere Bilder / 20fach bessere Auflösung als ein gewöhnliches Lichtmikroskop - Zwei Forschungsteams der Universität Würzburg haben dem Hochleistungs-Lichtmikroskop einen Auflösungsschub verpasst. Dazu bedampften sie den Glasträger, auf dem das beobachtete Objekt liegt, mit maßgeschneiderten biokompatiblen Nanoschichten, die einen „Spiegeleffekt“ bewirken. Mit dieser einfachen Methode konnten sie die Bildauflösung signifikant erhöhen und einzelne Molekülkomplexe auflösen, die sich mit einem normalen Lichtmikroskop nicht abbilden lassen. Die Studie wurde in der NATURE Zeitschrift „Light: Science and Applications“ veröffentlicht.

Die Schärfe von Lichtmikroskopen ist aus physikalischen Gründen begrenzt: Strukturen, die näher beieinander liegen als 0,2 tausendstel Millimeter, verschwimmen...

Im Focus: Supercomputer ohne Abwärme

Konstanzer Physiker eröffnen die Möglichkeit, Supraleiter zur Informationsübertragung einzusetzen

Konventionell betrachtet sind Magnetismus und der widerstandsfreie Fluss elektrischen Stroms („Supraleitung“) konkurrierende Phänomene, die nicht zusammen in...

Im Focus: Drei Nervenzellen reichen, um eine Fliege zu steuern

Uns wirft so schnell nichts um. Eine Fruchtfliege kann dagegen schon ein kleiner Windstoß vom Kurs abbringen. Drei große Nervenzellen in jeder Hälfte des Fliegenhirns reichen jedoch aus, um die Fliege mit Hilfe visueller Signale wieder auf Kurs zu bringen.

Bewegen wir uns vorwärts, zieht die Umwelt in die entgegengesetzte Richtung an unseren Augen vorbei. Drehen wir uns, verschiebt sich das Bild der Umwelt im...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Januar und Februar 2019

11.12.2018 | Veranstaltungen

Eine Norm für die Reinheitsbestimmung aller Medizinprodukte

10.12.2018 | Veranstaltungen

Fachforum über intelligente Datenanalyse

10.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuartige Lasertechnik für chemische Sensoren in Mikrochip-Größe

11.12.2018 | Physik Astronomie

Besser Bohren – Neues Nanokomposit stabilisiert Bohrflüssigkeiten

11.12.2018 | Geowissenschaften

DFG unterstützt Kongresse und Tagungen - Januar und Februar 2019

11.12.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics