Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie die großen Falten in Grönlands Eisschild entstehen

29.04.2016

Tübinger Forscher untersuchen die Dynamik der tiefen Eisschichten im Einzugsbereich des Petermann-Gletschers

Die dicken Polareisschilde Grönlands wirken kompakt, doch mit einem modernen Flugradar lassen sich auch in der Tiefe einzelne Schichten erkennen. Die Schichtenfolge erzählt von früheren Verformungen und zeigt Unregelmäßigkeiten des Eisflusses, die nicht mit der Form des Felsbetts zusammenhängen.


Diagramm zur Schichtung des Eises am Petermann-Gletscher in Nordgrönland.

Abbildung: Paul Bons

Geowissenschaftler der Universität Tübingen und des Alfred-Wegener-Instituts haben unter der Leitung von Professor Paul Bons ein neues Modell entwickelt, das beschreibt, durch welche Prozesse die Architektur tiefer Eisschichten entstand. Ihr Untersuchungsgebiet war der Petermann-Gletscher in Nordgrönland.

Die Forscher erstellten ein dreidimensionales Modell der Eisschichtarchitektur. Als Hauptstrukturen beschreiben sie bis zu zehn Kilometer breite zylindrische Falten, die parallel zum Eisfluss verlaufen. Mit Hilfe des Modells stellten die Forscher fest, dass diese Falten mit hoher Wahrscheinlichkeit durch seitlichen Druck auf mechanisch anisotropes Eis entstanden sind. Anisotropie bedeutet, dass das Eis sich viel leichter unter Scherung deformiert und härter gegenüber seitlichem Druck reagiert. Vermutlich bilden sich die großen Falten, während der langsame Eisfluss zum Gletscher hin kanalisiert wird.

Der Eisschild Grönlands ist durch immer wieder übereinander geschichtete Schneefälle entstanden, die sich zu kompaktem Eis verdichtet haben. Das kompakte Eis fließt durch den Druck seines eigenen Gewichts in Richtung Küste. „Der Eisschild hat daher die Form einer flachen Kuppel, bei der das junge Eis an der Oberfläche und das ältere Eis an der Basis zu finden ist“, erklärt Paul Bons.

Durch Eiskernbohrungen können Forscher Daten über das frühere Klima ableiten zurückgehend bis in die Eem-Warmzeit in Grönland vor 115.000 Jahren. Erst mithilfe eines Flugradars konnten die einzelnen Schichten auch in der Tiefe abgebildet werden, dadurch erkannten die Forscher, dass die Eisschichtung in tieferen Ebenen unterbrochen ist. „Dort gibt es Falten von leichten Wellen bis hin zu Lagen, die um 180 Grad verkippt sind, sowie auch abgeschnittene Lagen und lückenhafte Bereiche“, sagt der Forscher.

Solche Auffaltungen des Eises wurden schon vorher an mehreren Stellen des Eisschilds entdeckt, doch nur im Untersuchungsgebiet oberhalb des Petermann-Gletschers war die Datenabdeckung und -qualität ausreichend für die Entwicklung eines 3D-Modells der Schichtungen. Nach den neuen Berechnungen können die Strukturen nicht durch unterschiedliche Viskosität der Schichten selbst entstanden sein.

„Unsere Ergebnisse machen deutlich, dass es wichtig ist, die Anisotropie des Eises besser in Fließmodelle einzubringen als bisher üblich. Nur so können wir vorhersagen, wo in Grönland Störungen der Schichtung zu erwarten sind“, sagt Bons. Realitätsgetreue Modelle seien wichtig, um etwa die aus der Eisschichtung gewonnenen Daten über das frühere Klima richtig zu interpretieren.

Publikation:
Paul D. Bons, Daniela Jansen, Felicitas Mundel, Catherine C. Bauer, Tobias Binder, Olaf Eisen, Mark W. Jessell, Maria-Gema Llorens, Florian Steinbach, Daniel Steinhage & Ilka Weikusat: Converging flow and anisotropy cause large-scale folding in Greenland ice sheet. Nature Communications, Online-Veröffentlichung am 29. April 2016, DOI: 10.1038/ncomms11427.

Kontakt:
Prof. Dr. Paul Bons
Universität Tübingen
Mathematisch-Naturwissenschaftliche Fakultät
Fachbereich Geowissenschaften – Strukturgeologie
paul.bons[at]uni-tuebingen.de

Dr. Karl Guido Rijkhoek | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-tuebingen.de/

Weitere Berichte zu: Anisotropie Eisschild Falten Greenland ice sheet Grönland ice sheet

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Eine Festung aus Eis und Schnee
04.10.2019 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Vom Verschwinden der peruanischen Gletscher
02.10.2019 | Friedrich-Alexander-Universität Erlangen-Nürnberg

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Verletzungen des Sprunggelenks immer ärztlich abklären lassen

16.10.2019 | Veranstaltungen

Digitalisierung trifft Energiewende

15.10.2019 | Veranstaltungen

Bauingenieure im Dialog 2019: Vorträge stellen spannende Projekte aus dem Spezialtiefbau vor

15.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Verletzungen des Sprunggelenks immer ärztlich abklären lassen

16.10.2019 | Veranstaltungsnachrichten

Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

16.10.2019 | Messenachrichten

Es braucht mehr als einen globalen Eindruck, um einen Fisch zu bewegen

16.10.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics