Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Plattentektonik dank Plumes?

12.11.2015

Dass die oberste starre Schicht der Erdoberfläche aus beweglichen Platten zusammengesetzt ist, gehört zum Grundschulwissen. Welcher Mechanismus die Plattentektonik jedoch in Bewegung gesetzt hat, ist bislang ein Rätsel. Ein Team von Wissenschaftlern unter der Leitung von ETH-Professor Taras Gerya hat nun mithilfe von Simulationen eine mögliche Antwort erhalten.

«Nur zu wissen, wie ein Huhn aussieht und alle die Hühner davor ausgesehen haben, hilft nicht, das Ei zu verstehen», sagt Taras Gerya. Der ETH-Professor für Geophysik spricht mit diesem Bild die Plattentektonik und die frühe Erdgeschichte an.


Falschfarbenbild der Venus: Sah die Erde vor Beginn der Plattentektonik ähnlich aus?

NASA/JPL

Die Lithosphäre der Erde, also die oberste starre Schicht, welche die Erdkruste und den obersten harten Teil des Mantels umfasst, ist in verschiedene Platten unterteilt, die in ständiger Bewegung sind. Und Geologen verstehen heute gut, wovon diese Plattenbewegungen angetrieben werden: Entlang von sogenannten Subduktionszonen tauchen schwerere ozeanische Platten unter leichtere Kontinentalplatten. Ist die Bewegung einmal in Gang gekommen, wird sie durch das Gewicht der abtauchenden Platte aufrecht erhalten.

Nach wie vor verstehen Erdwissenschaftler jedoch nicht, was die Plattentektonik auslöste und wie sich die erste Subduktionszone bildete. Denn um das Abtauchen von Teilen der Erdkruste in den Erdmantel zu starten, braucht es eine Schwachstelle in der Lithosphäre. War es ein gigantischer Meteorit, welcher ein Loch in sie schlug? Oder sorgten die Kräfte der Mantelkonvektion dafür, dass die Lithosphäre in bewegliche Teile zerbarst?

Vorbild Venus

Keine dieser Erklärungsversuche sind für Gerya schlüssig. «Die modernen tektonischen Bewegungen lassen kaum Rückschlüsse darauf zu, was diese in Gang gesetzt hat», erklärt er. Der ETH-Professor suchte deshalb nach einer neuen plausiblen Erklärung.

Inspiration dafür fand er unter anderem anhand von Studien der Oberfläche des Planeten Venus. Auf diesem Planeten gab es nie Plattentektonik. Dafür beobachtete (und modellierte) Gerya auf der Venus Strukturen, die in der Frühzeit (Präkambrium) der Erdgeschichte vor dem Einsetzen der Plattentektonik möglicherweise auch auf der Erdoberfläche zu finden waren: riesige kraterähnliche Kreise. Diese weisen vermutlich darauf hin, dass Mantelplumes vom Eisen-Kern der Venus an die Oberfläche aufstiegen und die Haut dieses Planeten aufweichten und schwächten.

Plumes entstehen tief im Inneren der Venus, steigen bis unter deren starrer Aussenhaut auf und führen dabei teilweise aufgeschmolzenes Mantelmaterial mit sich. Durch den Widerstand der harten Lithosphäre gebremst, breitet sich der Materialstrom seitlich aus und nimmt die Form eines Pilzes an. Die Plumes sorgten dafür, dass die Lithosphäre geschwächt und verformt wurde.

Solche Plumes existieren wahrscheinlich auch im Erdinnern. Sie könnten analog zur Venus in grauer Vorzeit Schwachstellen in der Lithosphäre der Erde erzeugt haben, welche für den Beginn der Plattentektonik nötig waren.

Mantelplumes erzeugt Schwachstelle

Zusammen mit Kollegen entwickelte der ETH-Geophysiker deshalb neue Computermodelle, mit deren Hilfe er diese Idee erstmals hochaufgelöst und dreidimensional untersuchte. Die entsprechende Publikation darüber wurde soeben in «Nature» veröffentlicht.

So zeigen die Simulationen, dass Mantelplumes und die von ihnen erzeugten Schwachstellen tatsächlich die ersten Subduktionszonen initiiert haben könnten.

In den Simulationen schwächt ein Plumes die darüber liegende Lithosphäre. Es bildet sich eine kreisrunde sich ausdünnende Schwachstelle von mehreren Dutzend bis hunderten Kilometern Durchmesser. Diese wird durch den Materialnachschub aus den Tiefen des Erdmantels im Laufe der Zeit gedehnt. «Um einen Ring ausweiten zu können, muss man ihn zerbrechen», erklärt der Forscher. Das gelte auch für die Haut der Erde: Die ringförmige Schwachstelle kann sich (im Modell) nur dann vergrössern, wenn die Ränder einreissen.

Wasser schmiert den Plattenrand

Die Risse pflanzen sich schliesslich in der Lithosphäre fort. Grosse Schollen davon tauchen in den weichen Mantel ab, die ersten Plattenränder entstehen. Die Zugkraft, die durch das Abtauchen dieser Schollen entsteht, setzt dann die Platte in Bewegung. Sie taucht ab, gut geschmiert durch eingeschlossenes Meerwasser der darüberliegenden Ozeane. Die Subduktion wird in Gang gesetzt – und damit die Plattentektonik. «Wasser ist als Schmiermittel eine unabdingbare Notwendigkeit, damit eine sich selbst erhaltende Subduktion in Gang kommt», sagt Gerya.

In ihren Simulationen vergleichen die Forscher unterschiedliche Temperaturbedingungen und Zustände der Lithosphäre. Dabei kommen sie zum Schluss, dass sich die Plumes-induzierte Plattentektonik wohl nur unter den Bedingungen entwickeln konnte, die im Präkambrium vor rund drei Milliarden Jahren herrschten. Damals war die Lithosphäre zwar schon dick und abgekühlt, der Mantel jedoch noch sehr heiss. Damit war genug Energie vorhanden, um die über einem Plumes liegende Lithosphäre entscheidend zu schwächen.

Wäre die Lithosphäre indessen dünn und warm gewesen, also weich, würde sich gemäss den Simulationen über dem Hut des Plumes lediglich eine ringförmige Struktur ablösen. Diese würde rasch und gleichförmig in den Mantel absinken, aber nicht zum Einreissen und Abtauchen der Lithosphäre führen und letztendlich keine Plattenränder erzeugen. Ebenso kann in den Computersimulationen unter heutigen Bedingungen mit geringeren Temperaturunterschieden zwischen Lithosphäre und Plumesmaterial nur sehr selten durch Plumes ausgelöste Subduktion entstehen, da die Lithosphäre bereits zu starr ist und der Plumes diese kaum mehr genügend schwächt.

Dominanter Mechanismus

«Unsere neuen Modelle erklären die Entstehung der Plattentektonik sehr plausibel», sagt der Geophysiker. Die Aktivität von Plumes reiche aus, um das heutige Plattenmosaik entstehen zu lassen. Gerya hält die Kraft der Plumes sogar für den dominanten Auslöser der weltweiten Plattentektonik.

Die Simulationen können auch erklären, wie sogenannte Triple Junctions entstehen, also Zonen, in denen drei Platten zusammenkommen. Eine solche Triple Junction bildet sich, indem der weiche «Deckel» oberhalb des aufstossenden Plumes in verschiedene Richtungen gedehnt wird. Eine derartige Dreifachgabelung beobachtet man zum Beispiel am Horn von Afrika im Länderdreieck Äthiopien, Eritrea und Djibouti.

Eine vergleichbare Schwächungszone und damit einen Ansatzpunkt für die weltweite Plattentektonik gibt es wahrscheinlich auch auf der modernen Erde: Eine solche sehen die Erdwissenschaftler in der Karibischen Platte. Deren Form, Lage und Ausdehnung entspricht weitgehend den Simulationen mit den neuen Modellen.

Würde man sich einzig auf Beobachtungen abstützen, dürfte der Beweis, wie die Plattentektonik auf dem Erdball eingesetzt hat, unmöglich sein. Aus der Erdfrühzeit gebe es keine geophysikalischen und nur wenige geologische Daten, und Laborexperimente seien für sehr grossräumige und sehr langfristige tektonische Prozesse nicht möglich, sagt der ETH-Forscher. «Computermodelle sind deshalb unser einziger Weg, um Vorgänge in der frühen Erdgeschichte nachzustellen und zu verstehen.»

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2015/11/plumes-aus...

Peter Rüegg | ETH Zürich

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Neues aus der Kinderstube der Diamanten
18.06.2019 | Goethe-Universität Frankfurt am Main

nachricht Schwerefeldbestimmung der Erde so genau wie noch nie
13.06.2019 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erfolgreiche Praxiserprobung: Bidirektionale Sensorik optimiert das Laserauftragschweißen

Die Qualität generativ gefertigter Bauteile steht und fällt nicht nur mit dem Fertigungsverfahren, sondern auch mit der Inline-Prozessregelung. Die Prozessregelung sorgt für einen sicheren Beschichtungsprozess, denn Abweichungen von der Soll-Geometrie werden sofort erkannt. Wie gut das mit einer bidirektionalen Sensorik bereits beim Laserauftragschweißen im Zusammenspiel mit einer kommerziellen Optik gelingt, demonstriert das Fraunhofer-Institut für Lasertechnik ILT auf der LASER World of PHOTONICS 2019 auf dem Messestand A2.431.

Das Fraunhofer ILT entwickelt optische Sensorik seit rund 10 Jahren gezielt für die Fertigungsmesstechnik. Dabei hat sich insbesondere die Sensorik mit der...

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: Additive Fertigung zur Herstellung von Triebwerkskomponenten für die Luftfahrt

Globalisierung und Klimawandel sind zwei der großen Herausforderungen für die Luftfahrt. Der »European Flightpath 2050 – Europe’s Vision for Aviation« der Europäischen Kommission für Forschung und Innovation sieht für Europa eine Vorreiterrolle bei der Vereinbarkeit einer angemessenen Mobilität der Fluggäste, Sicherheit und Umweltschutz vor. Dazu müssen sich Design, Fertigung und Systemintegration weiterentwickeln. Einen vielversprechenden Ansatz bietet eine wissenschaftliche Kooperation in Aachen.

Das Fraunhofer-Institut für Produktionstechnologie IPT und der Lehrstuhl für Digital Additive Production DAP der RWTH Aachen entwickeln zurzeit eine...

Im Focus: Die verborgene Struktur des Periodensystems

Die bekannte Darstellung der chemischen Elemente ist nur ein Beispiel, wie sich Objekte ordnen und klassifizieren lassen.

Das Periodensystem der Elemente, das die meisten Chemiebücher abbilden, ist ein Spezialfall. Denn bei dieser tabellarischen Übersicht der chemischen Elemente,...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Rittal und Innovo Cloud sind auf Supercomputing-Konferenz in Frankfurt vertreten

18.06.2019 | Veranstaltungen

Teilautonome Roboter für die Dekontamination - den Stand der Forschung bei Live-Vorführungen am 25.6. erleben

18.06.2019 | Veranstaltungen

KI meets Training

18.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Universität Jena mit innovativer Lasertechnik auf Photonik-Messe in München vertreten

19.06.2019 | Messenachrichten

Meilenstein für starke Zusammenarbeit: Neuer Standort für Rittal und Eplan in Italien

19.06.2019 | Unternehmensmeldung

Katalyse: Hohe Reaktionsraten auch ohne Edelmetalle

19.06.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics