Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Messmethode zur Datierung von Gletschereis

23.04.2019

Mit quantenphysikalischen Techniken wollen Forscher Klimaveränderungen in der Kleinen Eiszeit besser verstehen

Eine an der Universität Heidelberg entwickelte Messmethode zur präzisen Datierung von Gletschereis aus der Kleinen Eiszeit wurde gemeinsam mit Forscherinnen und Forschern der Österreichischen Akademie der Wissenschaften in den Ostalpen erfolgreich getestet.


Die auf quantenphysikalischen Techniken basierende Methode soll dazu beitragen, regionale Klimaänderungen besser zu verstehen. Nach den Worten der Wissenschaftler stellen die Ergebnisse einen Durchbruch bei der Eisdatierung im Altersbereich der letzten 1.000 Jahre dar. Sie wurden im Fachmagazin Proceedings of the National Academy of Sciences (PNAS) veröffentlicht.

Für die Datierung von Wasser und Eis haben Prof. Dr. Markus Oberthaler vom Kirchhoff-Institut für Physik und Prof. Dr. Werner Aeschbach vom Institut für Umweltphysik an der Universität Heidelberg die sogenannte Atomfallenmethode (Atom Trap Trace Analysis – ATTA) zur Messung von Argon-39 entwickelt.

Argon ist ein radioaktives Edelgas und Spurenelement in unserer Umgebungsluft, dessen Isotop Argon-39 mit einer Halbwertszeit von 269 Jahren zerfällt. Zur Anwendung kam diese Methode bislang zur Datierung von älterem Eis der Antarktis sowie zur Datierung von Ozean- und Grundwasser.

Gemeinsam mit Dr. Andrea Fischer und Dr. Pascal Bohleber vom Institut für interdisziplinäre Gebirgsforschung der Österreichischen Akademie der Wissenschaften (ÖAW) wurde die Methode nun erstmals im Gletschereis eingesetzt, das als Klimaarchiv genutzt werden kann. Aufgrund seiner Beschaffenheit und seines Alters können Forscher Rückschlüsse über Klimaveränderungen und Umweltbedingungen in den vergangenen Jahrhunderten erzielen, aber auch Prognosen zu zukünftigen Entwicklungen vornehmen.

Untersucht hat das deutsch-österreichische Team Gletschereis am Schaufelferner in den Stubaier Alpen sowie am Titlisgletscher in der Schweiz. Die wenigen noch im Eis eingeschlossenen Argon-39-Isotope wurden dabei mittels einer Atomfalle gezählt. Die eingesetzte quantenoptische Technik basiert wiederum auf der Absorption von Millionen Lichtteilchen, um die gesuchten Argon-39-Isotope zu selektieren.

„Die Methode nutzt aus, dass verschiedene Isotope auf leicht unterschiedliches Laserlicht reagieren. Nur das gesuchte Argon-39 wird vom Licht abgebremst und detektiert, während die restlichen Isotope ungehindert an der Atomfalle vorbeifliegen“, erklärt Dr. Zhongyi Feng, Physiker am Kirchhoff-Institut und Erstautor der Studie.

Auf diese Weise benötigen die Wissenschaftler nur wenige Kilogramm Eis zur Altersbestimmung, gleichzeitig sind die Ergebnisse exakter: Gletschereis kann nun auf wenige Jahrzehnte genau datiert werden.

Verschiedene Messungen am Eis und anderen Klimaarchiven zeigen, dass die Kleine Eiszeit (ca. 1250 bis 1850 n. Chr.) keineswegs gleichmäßig, sondern mit erheblichen klimatologischen Schwankungen verlief. Mit der Atomfallenmethode lassen sich diese jetzt genauer zeitlich einordnen und damit auch im globalen Kontext vergleichen.

„Ein besseres Verständnis des Zusammenspiels von Klima, Geologie und Ökosystemen kann uns helfen, auch künftige Witterungs- und Klimaschwankungen besser einzuordnen“, sagt Gletscherforscherin Dr. Fischer. Nach der erfolgreichen Pilotstudie kommt es nun zur Feinabstimmung der Argon-39-Methode, bevor die ersten Gletschereis-Datierungsprojekte im Regelbetrieb starten.

Kontakt:
Universität Heidelberg
Kommunikation und Marketing
Pressestelle, Telefon +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Wissenschaftliche Ansprechpartner:

Dr. Zhongyi Feng
Universität Heidelberg
Kirchhoff-Institut für Physik
Telefon +49 6221 54-5189
zhongyi.feng@kip.uni-heidelberg.de

Dr. Andrea Fischer
Institut für interdisziplinäre Gebirgsforschung
Österreichische Akademie der Wissenschaften
Telefon +43 512 507 49451
andrea.fischer@oeaw.ac.at

Originalpublikation:

Z. Feng, P. Bohleber, S. Ebser, L. Ringena, M. Schmidt, A. Kersting, P. Hopkins, H. Hoffmann, A. Fischer, W. Aeschbach, M. Oberthaler: Dating glacier ice of the last millennium by quantum technology. Proceedings of the National Academy of Sciences. Published April 17, 2019. doi: https://doi.org/10.1073/pnas.1816468116.

Weitere Informationen:

http://www.kip.uni-heidelberg.de/matterwave

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Neues Messinstrument: Kohlenstoffdioxid als Geothermometer
21.05.2019 | Universität Heidelberg

nachricht Mysterium Bermuda: Geologen entdecken im Vulkangestein eine bisher unbekannte Region des Erdmantels
16.05.2019 | Westfälische Wilhelms-Universität Münster

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Direkte Abbildung von Riesenmolekülen

Physiker am Max-Planck-Institut für Quantenoptik (MPQ) konnten riesige zweiatomige Moleküle erzeugen und mit einem hochaufgelösten Mikroskop direkt abbilden.

Die optische Auflösung einzelner Konstituenten herkömmlicher Moleküle ist aufgrund der kleinen Bindungslänge im Sub-Nanometerbereich bisher nicht möglich....

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: Geometrie eines Elektrons erstmals bestimmt

Physiker der Universität Basel können erstmals zeigen, wie ein einzelnes Elektron in einem künstlichen Atom aussieht. Mithilfe einer neu entwickelten Methode sind sie in der Lage, die Aufenthaltswahrscheinlichkeit eines Elektrons im Raum darzustellen. Dadurch lässt sich die Kontrolle von Elektronenspins verbessern, die als kleinste Informationseinheit eines zukünftigen Quantencomputers dienen könnten. Die Experimente wurden in «Physical Review Letters» und die Theorie dazu in «Physical Review B» veröffentlicht.

Der Spin eines Elektrons ist ein vielversprechender Kandidat, um als kleinste Informationseinheit (Qubit) eines Quantencomputers genutzt zu werden. Diesen Spin...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Optische Superlinsen aus Gold

Oldenburger Forscher entwickeln neues optisches Mikroskop mit extrem hoher Auflösung

Eine kegelförmige Spitze aus Gold bildet das Kernstück eines neuen, extrem leistungsfähigen optischen Mikroskops, das Oldenburger Wissenschaftler in der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Effizientes Wertstoff-Recycling aus Elektronikgeräten

24.05.2019 | Veranstaltungen

Früherkennung 2.0: Mit Präzisionsmedizin Screeningverfahren weiterentwickeln

23.05.2019 | Veranstaltungen

Kindermediziner tagen in Leipzig

22.05.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Schweißen ohne Wärme

24.05.2019 | Maschinenbau

Bakterien in fermentierten Lebensmitteln interagieren mit unserem Immunsystem

24.05.2019 | Biowissenschaften Chemie

Wie Einzelzellen und Zellverbünde beim Navigieren zusammenwirken

24.05.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics