Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gebirge in Bewegung

14.08.2018

Die Alpen wandern: Im Durchschnitt driftet das Gebirge im Jahr um einen halben Millimeter nach Norden und hebt sich um 1,8 Millimeter. Regional gibt es jedoch starke Abweichungen. Um die Bewegungen zu ermitteln, haben Forscher und Forscherinnen der Technischen Universität München (TUM) die Messungen von mehr als 300 GPS-Antennen über einen Zeitraum von 12 Jahren ausgewertet. Ein Computermodell veranschaulicht die Dynamik des gesamten Alpenraums.

Die Dynamik der Erdkruste ist für uns Menschen nicht spürbar. Wer auf einem Berggipfel in den Alpen steht, merkt nicht, dass sich der Fels unter ihm bewegt. Ein Team vom Deutschen Geodätischen Forschungsinstitut der TUM hat jetzt erstmals die Bewegungen des Gebirges flächendeckend sichtbar gemacht.


Aus den GPS-Daten abgeleitetes horizontales Spannungsfeld: In roten Bereichen tritt eine Kompression auf, in blauen eine Dehnung.

DGFI-TUM

Die Daten hierfür lieferten mehr als 300 GPS-Antennen in den deutschen, österreichischen, slowenischen, italienischen, französischen und schweizer Alpen. Die Positionen der Messstationen, die zu einem großen Teil im EU-Projekt ALPS-GPSQUAKENET errichtet wurden und teilweise von der TUM selbst betrieben werden, ermittelten sie auf Bruchteile eines Millimeters genau.

Goldgrube für die Geodäsie

Seit 12 Jahren führt jede dieser Stationen im 15-Sekunden-Takt Positionsbestimmungen durch. „Die Daten sind eine Goldgrube für die Geodäsie, die das Ziel hat, die Oberfläche der Erde genau zu vermessen und Veränderungen zu erkennen“, erklärt Prof. Florian Seitz vom Lehrstuhl für Geodätische Geodynamik.

„Die größte Herausforderung war die einheitliche Aufbereitung der Messergebnisse“, erinnert sich Dr. Laura Sánchez. Die Forscherin hat eine halbe Million Beobachtungen verarbeitet: „Die Messungen werden beispielsweise beeinträchtigt durch die Auflast von Schnee, der die Antennen im Winter absenkt, oder durch Anomalien in der Atmosphäre, welche die GPS-Signale beeinflussen. Solche Störfaktoren muss man erkennen und bereinigen.“

Ein Modell für den gesamten Alpenraum

Die bereinigten Messwerte nutzten die Wissenschaftlerinnen und Wissenschaftler, um ein Computermodell des gesamten Alpenraums zu erstellen. Ein Novum: „Bisherige Auswertungen waren auf einzelne Regionen beschränkt. Unser Modell reicht von den Seealpen bis nach Wien und umfasst damit alle Teile des Gebirges“, betont Seitz. „Außerdem können wir mit einer Auflösung von 25 Kilometern die horizontalen und vertikalen Verschiebungen sowie Dehnungen und Stauchungen darstellen.“

Gebirge auf Wanderschaft

Das Modell macht sowohl großräumige Bewegungsmuster als auch regionale Besonderheiten sichtbar: So wachsen die Alpen im Jahr um durchschnittlich 1,8 Millimeter und wandern mit einer Geschwindigkeit von bis zu 1,3 Millimetern nach Nordosten. In Süd- und Osttirol wird diese Bewegung jedoch überlagert von einer Rotation in Richtung Osten, gleichzeitig wird das Gebirge dort zusammengedrückt. Auch die Hebung verläuft nicht überall gleichmäßig: Im südlichen Teil der Westalpen ist sie sehr gering, in den Zentralalpen, an der Grenze zwischen Österreich, der Schweiz und Italien erreicht sie mit mehr als 2 Millimetern pro Jahr ein Maximum.

Aus den Veränderungen der Oberfläche lassen sich Rückschlüsse ziehen auf die Plattentektonik im Untergrund. Die gemessenen Bewegungen sind die Folge der alpidischen Gebirgsbildung, die im Jura, vor 200 Millionen Jahren, begann und bis heute andauert. „Geologen und Geophysiker, die sich mit der Alpendynamik beschäftigen, sind daher sehr interessiert an unserem Datensatz - dem umfangreichsten, den es je gegeben hat“, berichtet Seitz.

Weitere Informationen:
Die Forschung wurde in Zusammenarbeit mit dem Projekt Erdmessung und Glaziologie der Bayerischen Akademie der Wissenschaften durchgeführt. Alle im Rahmen der Studie berechneten Daten sind verfügbar über https://doi.pangaea.de/10.1594/PANGAEA.886889

Wissenschaftliche Ansprechpartner:

Kontakt:
Prof. Dr.-Ing. Florian Seitz
Technische Universität München
Deutsches Geodätisches Forschungsinstitut (DGFI-TUM)
089/23031-1106
florian.seitz@tum.de

Originalpublikation:

Publikation:
Sánchez, Laura; Völksen, Christof; Sokolov, Alexandr; Arenz, Herbert; Seitz, Florian (2018): Present-day surface deformation of the Alpine Region inferred from geodetic techniques.
Die Studie wurde in der Fachpublikation Earth System Science Data veröffentlicht. Die Fachzeitschrift ist spezialisiert auf die Publikation von Datensätzen.
Link: https://doi.org/10.5194/essd-2018-19 (Preprint-Version)

Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
http://www.tum.de

Weitere Berichte zu: Alpen Earth System Science Erdmessung Gebirge Geodäsie TUM

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Tiefseebergbau: Forschung zu Risiken und ökologischen Folgen geht weiter
21.09.2018 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

nachricht Warnung vor Hybris bei CO2-Entzug
20.09.2018 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tiefseebergbau: Forschung zu Risiken und ökologischen Folgen geht weiter

21.09.2018 | Geowissenschaften

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungsnachrichten

Optimierungspotenziale bei Kaminöfen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics