Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Suche nach dem Erdbeben-Keim

02.08.2016

Sind kalkhaltige Sedimente Schwachstellen in seismogenen Zonen?

Wo eine Erdplatte unter eine andere abtaucht, in den sogenannten Subduktionszonen an den Ozeanrändern, entstehen viele schwere Erdbeben. Besonders die Beben in geringer Tiefe verursachen häufig auch Tsunamis. Wodurch werden solche Erdbeben genau ausgelöst? Welche Zusammensetzung des Untergrundes begünstigt einen Bruch im Erdinneren, der zu einer solchen Naturkatastrophe führen kann?


Schematisches Diagramm einer Subduktionszone mit Sedimentschichten.

Grafik: C. Kersten, GEOMAR

Wissenschaftler des GEOMAR Helmholtz-Zentrums für Ozeanforschung Kiel und der Universität Utrecht (NL) veröffentlichen jetzt in der Fachzeitschrift Nature Geoscience eine Studie, die zeigt, dass kalkhaltige Sedimente die Keimzelle von Erdbeben bilden können.

Die Auswirkungen von Erdbeben sind oft schwerwiegend und unübersehbar. Sie können Häuser zerstören, Hänge abrutschen lassen und Tsunamis auslösen. Die Hauptursache bilden Spannungen die im Erdinneren auftreten, wenn sich zwei Erdplatten aneinander vorbei bewegen und dabei verhaken. Doch auch das schwerste Erdbeben fängt irgendwo sehr klein mit einem ersten Riss im Gestein an, aus dem sich ein großer Bruch entwickeln kann.

Bisher galt die Vermutung, dass Initialrisse für Erdbeben vor allem in tonhaltigen Sedimentgesteinen auftreten. Wissenschaftler des GEOMAR Helmholtz-Zentrums für Ozeanforschung Kiel und der Universität Utrecht (NL) konnten jetzt nachweisen, dass kalkhaltige Sedimente unter bestimmten Voraussetzungen wahrscheinlichere Kandidaten für den ersten Bruch eines Bebens darstellen. Die Studie erscheint heute in der internationalen Fachzeitschrift Nature Geoscience.

Für die Untersuchungen nutzten die Wissenschaftler Proben, die sie 2011 und 2012 im Rahmen zweier Expeditionen mit dem US-amerikanischen Bohrschiff JOIDES RESOLUTION vor der Küste von Costa Rica gewonnen hatten.

Dort taucht die pazifische Cocos-Erdplatte unter die karibische Erdplatte ab. Dies hat in der Vergangenheit immer wieder zu schweren Erdbeben in der Region geführt. „Ziel des Costa-Rica Seismogenese-Projekts, kurz CRISP, war es, mit Hilfe von Bohrungen Informationen über den Aufbau der abtauchenden und der darüber liegenden Erdplatte zu erhalten“, erklärt Privatdozent Dr. Michael Stipp vom GEOMAR, Initiator und Zweitautor der aktuellen Forschungsstudie.

Beim Abtauchen nimmt die Cocos-Platte aufliegende Sedimentschichten mit in die Tiefe, die so zwischen den Platten eingeklemmt werden. „Vor Costa Rica beginnt die Zone, in der Erdbeben an der Plattengrenze entstehen, bereits in einer besonders geringen Tiefe von circa fünf bis sechs Kilometern, und zwar genau in diesen subduzierten Sedimenten“, erklärt Robert Kurzawski, Doktorand am GEOMAR und Erstautor der Studie.

Allerdings sind die Sedimente oft ungleichförmig zusammengesetzt. Vor Costa Rica und vor den meisten Subduktionszonen im tropischen und subtropischen Bereich finden sich sowohl tonhaltige als auch kalkhaltige Schichten. Dank der Bohrungen der JOIDES RESOLUTION verfügten die Forscher über Originalproben aus genau diesen Sedimentschichten.

Die Proben konnten sie im gesteinsmechanischen Labor der Universität Utrecht Bedingungen aussetzen, wie sie in der Tiefe herrschen, in der flache Erdbeben entstehen. „Dazu gehören ein erhöhter Druck, Temperaturen um 100 Grad Celsius und schließlich auch Scherbewegungen“, erklärt Dr. Stipp.

Da die tonhaltigen Sedimente als mechanisch weniger belastbar gelten, ging man bisher davon aus, dass in ihnen die ersten Risse entstehen, wenn die Spannungen im Untergrund entsprechend groß sind. Bei den Versuchen stellte sich jedoch heraus, dass die tonigen Sedimente aus Costa Rica, im Gegensatz zu den kalkhaltigen, unempfindlich auf Veränderungen in Spannung, Temperatur und vor allem Porendruck reagieren. Die kalkhaltigen Sedimente hingegen, verändern ihre Reibungseigenschaften bei einem Temperatur- und Porendruckanstieg erheblich. „Bei genau den Bedingungen, wie sie im Falle flacher Erdbeben zu erwarten sind, waren Kalke plötzlich instabil und zudem weniger fest als tonhaltiges Material. Mit dieser Eigenschaft bilden sie eine natürliche Sollbruchstelle im Gesteinsverband“, erklärt Robert Kurzawski.

Interessant sind die Ergebnisse, weil kalkhaltige Sedimente vor allem für tropische und subtropische Meere typisch sind und damit an vielen Subduktionszonen rund um den Pazifik, aber auch in der Karibik und im Mittelmeer vorkommen.

„Natürlich kennen wir damit noch lange nicht alle Prozesse, die ein Erdbeben auslösen können. Wir haben aber mit dieser Studie gezeigt, dass man Materialeigenschaften von der Erdoberfläche nicht einfach auf die Tiefe übertragen darf. Deshalb sind auch weitere Bohrungen, vor allem im Rahmen des International Ocean Discovery Programs, dringend notwendig, um mehr über die Erdbebenprozesse im Untergrund zu erfahren“, betont Michael Stipp.

Originalarbeit:
Kurzawski, R. M., M. Stipp, A. R. Niemeijer, C. J. Spiers, J. H. Behrmann (2016): Earthquake nucleation in weak subducted carbonates. Nature Geoscience, http://dx.doi.org/10.1038/ngeo2774

Kontakt:
Dr. Andreas Villwock (GEOMAR, Kommunikation & Medien), Tel.: 0431 600-2802, presse@geomar.de

Dr. Andreas Villwock |
Weitere Informationen:
http://www.geomar.de/

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Was unter dem Yellowstone-Vulkan passiert
17.10.2019 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht Eine Festung aus Eis und Schnee
04.10.2019 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

Verletzungen des Sprunggelenks immer ärztlich abklären lassen

16.10.2019 | Veranstaltungen

Digitalisierung trifft Energiewende

15.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Dehnbare Elektronik: Neues Verfahren vereinfacht Herstellung funktionaler Prototypen

17.10.2019 | Materialwissenschaften

Lumineszierende Gläser als Basis neuer Leuchtstoffe zur Optimierung von LED

17.10.2019 | Physik Astronomie

Dank Hochfrequenz wird Kommunikation ins All möglich

17.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics