Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zufallsfund vor Galapagos

19.09.2006
Bremer Meeresforscher entdecken, wie Bakterien im Meeresboden Propan produzieren

Während einer Expedition vor der Küste Südamerikas hat ein internationales Meeresforscher-Team entdeckt, dass Ethan- und Propanvorkommen tief unter dem Meeresboden weit verbreitet sind und dass Mikroorganismen bei der Entstehung dieser energiereichen Gas eine Schlüsselrolle spielen. Das Team unter Leitung von Prof. Kai-Uwe Hinrichs beschreibt die neuen Erkenntnisse in einem Artikel, der in dieser Woche in den "Proceedings" der US-Akademie der Wissenschaften (PNAS) erscheint. Die in dem angesehenen Wissenschaftsmagazin veröffentlichten Befunde weisen auf bislang ungeahnte Stoffkreisläufe und Stoffwechselprozesse in der sog. tiefen Biospähre hin.

"Eigentlich war es ein Zufallsfund", sagt Prof. Hinrichs. An Bord des Expeditionsschiffs "JOIDES Resolution" untersuchte der Bremer Geochemiker Ablagerungen, die südlich der Galapagos-Inseln und vor der Küste Perus bis zu 400 Meter tief im Meeresboden erbohrt worden waren. "Wir hatten so viel Probenmaterial zu bearbeiten, dass sich die Probengläschen mit den bis zu 40 Millionen Jahre alten Meeresablagerungen schnell türmten, denn an fast Tausend Proben wollten wir Gasgehalte bestimmen." Trotz der bis zu 14-stündigen Schichten konnten viele Proben erst deutlich später als geplant gemessen werden. - Zum Glück! "Denn in vielen der schon etwas `älteren` Proben bemerkten wir ungewöhnlich hohe Konzentrationen an Ethan und Propan", berichtet der Bremer Meeresforscher. Bald wurde klar, dass die Gase während der Wartezeit aus den Sedimenten entwichen sein mussten.

Die Wissenschaftler begannen sich zu fragen, welche Prozesse tief im Meeresboden für die erhöhten Gaskonzentrationen verantwortlich sind. Normalerweise entstehen Ethan und Propan, wenn sich dort Erdöl und Erdgase bilden - unter erhöhten Temperaturen und Drücken und ohne dass Mikroorganismen direkt beteiligt sind. In dem Artikel, der jetzt in PNAS erscheint, kann das Forscherteam aber zeigen, dass bei der Entstehung der energiereichen Gase im Untersuchungsgebiet Druck und Temperatur nicht die Ausschlag gebenden Faktoren sind. Mikroorganismen spielen hier die Schlüsselrolle!

"Meeresablagerungen enthalten organisches Material - die Überreste der im Ozean lebenden Pflanzen und Tiere", erklärt Prof. Hinrichs. Dieses Material stellt eine wichtige Lebensgrundlage für das mikrobielle Leben in der tiefen Biosphäre dar. Bei den dort ablaufenden Recyclingprozessen entsteht auch Acetat. Bakterien wandeln dieses Salz der Essigsäure um: "Sie nutzen das im Sediment vorhandenen Wasserstoff, um Ethan zu produzieren sowie Wasserstoff und anorganischen Kohlenstoff, um Acetat in Propan umzuwandeln."

Für die Richtigkeit dieser Annahme führt das Forscherteam mehrere Indizien ins Feld: "Ethan- und Propan führende Erdöl- oder Erdgaslagerstätten sind weit entfernt, kommen als Quelle also nicht in Betracht", sagt Prof. Hinrichs "Zudem unterscheidet sich die Zusammensetzung der stabilen Kohlenstoffisotope unserer Gasproben deutlich von den Isotopenwerten, die wir bei Ethan und Propan in Öl- und Gasvorkommen finden", führt Co-Autor John Hayes, Geochemiker an der amerikanischenWoods Hole Oceanographic Institution, aus. "Außerdem konnte unser Team zeigen, dass bei den Recyclingprozessen in der Tiefe ausreichend Energie für das Wachstum bakterieller Lebensgemeinschaften abfällt", ergänzt Prof. Wolfgang Bach, Mitautor am Bremer Forschungszentrum.

Die jetzt veröffentlichte Arbeit wirft etliche, zukunftsweisende Fragen auf: In einer Doktorarbeit, die derzeit am Bremer Forschungszentrum entsteht, wird untersucht, ob die Ethan- und Propanmoleküle im Meeresboden möglicherweise zwischen geschichteten Tonmineralen eingelagert sind. - Zudem stehen weitere Versuche in den Labors des Bremer Forschungszentrums an: "Unser vordringliches Ziel muss es sein, die im Meeresboden ablaufenden bakteriellen Prozesse unter kontrollierten Bedingungen nachzuvollziehen, um die Richtigkeit der geochemischen Prozesse, die wir im PNAS-Artikel postulieren, zu untermauern", sagt Prof. Hinrichs. Im Labor sind die tief im Meeresboden ablaufenden Vorgänge nur schwer zu simulieren. Sollte dies jedoch gelingen, hat der Bremer Geochemiker schon einen Plan in der Hinterhand: "Dann sollten wir schauen, ob es uns gelingt, die Ausbeute des Energieträgers Propan mit Hilfe der Bakterien zu erhöhen. Derzeit ist das natürlich noch Zukunftsmusik."

Weitere Infos / Interviews:
Prof. Kai-Uwe Hinrichs
DFG-Forschungszentrum Ozeanränder
Universität Bremen
Tel. +49 - 421 - 218-65700
Email: khinrichs@uni-bremen.de

Albert Gerdes | idw
Weitere Informationen:
http://www.pnas.org
http://www-odp.tamu.edu
http://www.iodp.org

Weitere Berichte zu: Bakterie Ethan Geochemiker Meeresboden Mikroorganismus Propan

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Tiefseebergbau: Forschung zu Risiken und ökologischen Folgen geht weiter
21.09.2018 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

nachricht Warnung vor Hybris bei CO2-Entzug
20.09.2018 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tiefseebergbau: Forschung zu Risiken und ökologischen Folgen geht weiter

21.09.2018 | Geowissenschaften

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungsnachrichten

Optimierungspotenziale bei Kaminöfen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics