Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Im Herzen von Strömungen

26.05.2008
Murgänge und Lawinen

Am Labor für Umwelthydraulik der ETH Lausanne simulieren Forschende mit Unterstützung des Schweizerischen Nationalfonds (SNF) Murgänge und Lawinen. Ihr Ziel: die Vorgänge aus Sicht der Strömungslehre bis in feine Details zu verstehen. Durch ein tieferes Verständnis der Schlüsselprozesse könnten die kostspieligen Konsequenzen dieser Abflussphänomene eingedämmt werden.

In der Schweiz entfallen rund ein Drittel der von den kantonalen Versicherungen gedeckten Kosten auf hydrologische Risiken. Zu dieser Gruppe von Risiken gehören auch Lawinen und Murgänge. Das Team von Prof. Christophe Ancey widmet sich am Labor für Umwelthydraulik der ETH Lausanne mit Unterstützung des Schweizerischen Nationalfonds (SNF) der Erforschung dieser Phänomene unter dem Blickwinkel der Strömungslehre.

Tatsächlich handelt es sich sowohl bei Lawinen als auch bei Murgängen um Mischungen eines Fluids (Luft bzw. Wasser) mit Partikeln (Schnee bzw. Felsfragmente). Ein tieferes Verständnis der Eigenschaften solcher Fluide ermöglicht eine bessere Vorhersage und Prävention und dadurch eine Eindämmung der Kosten dieser hydrologischen Risiken.

... mehr zu:
»Fluid »Lawine »Strömung

Durch Simulation vom Allgemeinen zum Speziellen

In ihrem Labor in Lausanne haben die Forschenden eine Versuchsanordnung eingerichtet, mit der diese Phänomene simuliert und analysiert werden können. Während in der Natur jeder Murgang einzigartig und nicht wiederholbar ist, lässt er sich in der Simulation präzise reproduzieren und durch die gezielte Veränderung grundsätzlicher Parameter nach Belieben steuern.

Dadurch können zwar vereinfachende, aber dennoch für zahlreiche Situationen gültige Schlüsse gezogen werden. Dazu mussten die Wissenschaftler bildgebende Verfahren entwickeln, mit denen festgestellt werden kann, was im Inneren eines strömenden Fluids vor sich geht. Diese Verfahren und ihre Ergebnisse waren Gegenstand einer Reihe von kürzlich erschienenen Publikationen (http://lhe.epfl.ch/articles-en.html).

Bei einem dieser Verfahren wird ein Laser eingesetzt. Ein Teil der in einem Fluid suspendierten Partikel wird mit Hilfe eines Fluoreszenzfarbstoffs markiert. Wenn dieser Farbstoff mit sehr kurz gepulsten Laserstrahlen angeregt wird, sendet er Licht aus, das von einer Kamera mit 28 Bildern pro Sekunde aufgezeichnet wird. Dadurch lassen sich die Bewegungen der Teilchen verfolgen und die rheologischen Eigenschaften des Fluids ableiten, das heisst Einsichten in die Art gewinnen, wie sich das Fluid unter äusseren Einflüssen verformt.

Eine einzigartige Versuchsanordnung

Wenn diese Eigenschaften bestimmt sind, untersuchen die Forschenden das Fliessverhalten unter dem Einfluss der Schwerkraft. Bei diesem Experiment wird sozusagen ein Staudammbruch simuliert: Das Fluid wird in einem Behälter mit einer Schleuse zurückgehalten. Beim raschen Öffnen der Schleuse stürzt das Fluid heraus und strömt einen abfallenden Kanal hinunter. Der Laser ist so ausgerichtet, dass sich die Bewegungen auf mehreren parallelen Ebenen entlang der Fliessrichtung bestimmen lassen. Diese Versuchsanordnung ist einzigartig und stellt einen innovativen Ansatz zur Untersuchung von Strömungen im Nichtgleichgewicht dar.

Für die Lausanner Wissenschaftler ist diese Rückkehr zur klassischen experimentellen Arbeit grundlegend. Heute stützen sich Vorhersagen zu natürlichen Risiken immer stärker auf Computermodelle. Ein erheblicher Teil der Modellierung beruht dabei jedoch auf Analogien mit einem bekannten Phänomen, wobei bestimmte Parameter entsprechend angepasst werden - zum Beispiel indem sie auf Geländedaten abgestimmt werden.

Dieser Ansatz ist nicht ungefährlich. Christophe Ancey nennt dazu ein Beispiel: "An der Front beträgt die Dicke einer Lawine Null. Bei einigen Modellen ist aber ein Wert von Null für die Dicke ausgeschlossen. Um die Schwierigkeit zu umgehen, wird deshalb auf einen mathematischen Trick zurückgegriffen. Durch den Trick ist die Position der Front jedoch nicht genau bestimmbar. Das ist insbesondere störend, wenn eine Gefahrenkarte erstellt wird, in der gerade diese Position festgelegt werden soll." Christophe Ancey ist überzeugt, dass solche Probleme durch ein besseres Verständnis der Schlüsselprozesse dieser Phänomene gelöst werden können.

Kontakt:
Prof. Christophe Ancey
Laboratorium für Umwelthydraulik
ETH Lausanne
1015 Lausanne
Tel. +41 (0)21 693 32 87
E-Mail: christophe.ancey@epfl.ch

| idw
Weitere Informationen:
http://www.snf.ch
http://lhe.epfl.ch/articles-en.html

Weitere Berichte zu: Fluid Lawine Strömung

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Das bekannteste Gestein der Welt? Der Andesit ist Gestein des Jahres 2020
23.01.2020 | GeoUnion Alfred-Wegener-Stiftung

nachricht Neutronenquelle ermöglicht Blick in Dino-Eier
22.01.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnellster hochpräziser 3D-Drucker

3D-Drucker, die im Millimeterbereich und größer drucken, finden derzeit Eingang in die unterschiedlichsten industriellen Produktionsprozesse. Viele Anwendungen benötigen jedoch einen präzisen Druck im Mikrometermaßstab und eine deutlich höhere Druckgeschwindigkeit. Forscherinnen und Forscher des Karlsruher Instituts für Technologie (KIT) haben ein System entwickelt, mit dem sich in bisher noch nicht erreichter Geschwindigkeit hochpräzise, zentimetergroße Objekte mit submikrometergroßen Details drucken lassen. Dieses System präsentieren sie in einem Sonderband der Zeitschrift Advanced Functional Materials. (DOI: 10.1002/adfm.201907795).

Um nicht nur die Geschwindigkeit, sondern auch die Zuverlässigkeit ihres Aufbaus zu demonstrieren, haben die Forscherinnen und Forscher eine 60 Kubikmillimeter...

Im Focus: Wie man ein Bild von einem Lichtpuls macht

Um die Form von Lichtpulsen zu messen, brauchte man bisher komplizierte Messanlagen. Ein Team von MPI Garching, LMU München und TU Wien schafft das nun viel einfacher.

Mit modernen Lasern lassen sich heute extrem kurze Lichtpulse erzeugen, mit denen man dann Materialien untersuchen oder sogar medizinische Diagnosen erstellen...

Im Focus: Ein ultraschnelles Mikroskop für die Quantenwelt

Was in winzigen elektronischen Bauteilen oder in Molekülen geschieht, lässt sich nun auf einige 100 Attosekunden und ein Atom genau filmen

Wie Bauteile für künftige Computer arbeiten, lässt sich jetzt gewissermaßen in HD-Qualität filmen. Manish Garg und Klaus Kern, die am Max-Planck-Institut für...

Im Focus: Integrierte Mikrochips für elektronische Haut

Forscher aus Dresden und Osaka präsentieren das erste vollintegrierte Bauelement aus Magnetsensoren und organischer Elektronik und schaffen eine wichtige Voraussetzung für die Entwicklung von elektronischer Haut.

Die menschliche Haut ist faszinierend und hat viele Funktionen. Eine davon ist der Tastsinn, bei dem vielfältige Informationen aus der Umgebung verarbeitet...

Im Focus: Dresdner Forscher entdecken Mechanismus bei aggressivem Krebs

Enzym blockiert Wächterfunktion gegen unkontrollierte Zellteilung

Wissenschaftler des Universitätsklinikums Carl Gustav Carus Dresden im Nationalen Centrum für Tumorerkrankungen Dresden (NCT/UCC) haben gemeinsam mit einem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

HDT-Tagung: Sensortechnologien im Automobil

24.01.2020 | Veranstaltungen

Tagung befasst sich mit der Zukunft der Mobilität

22.01.2020 | Veranstaltungen

ENERGIE – Wende. Wandel. Wissen.

22.01.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lichtgetriebene Nanomotoren - Erfolgreich gekoppelt

28.01.2020 | Biowissenschaften Chemie

Warum Gesunde für Kranke so wichtig sind! – Vergleichsstudie geht Fibromyalgie-Syndrom auf den Grund

28.01.2020 | Biowissenschaften Chemie

Kiss and Run: Wie Zellen ihre Bestandteile trennen und recyceln

28.01.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics