Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

AWI-Forscher entschlüsseln Klimaparadox aus dem Miozän

08.04.2014

Wachstum des antarktischen Eisschildes löste Erwärmung im Südozean aus

Wissenschaftler des Alfred-Wegener-Institutes, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI), haben in aufwendigen Modellrechnungen ein vermeintliches Klimaparadox aus dem Miozän-Erdzeitalter entschlüsselt.


Der Südozean

Als vor 14 Millionen Jahren der Antarktische Eispanzer zu seiner aktuellen Größe heranwuchs, erwärmte sich das Oberflächenwasser des Südozeans.

Foto: Frank Rödel, Alfred-Wegener-Institut


Das Filchner-Ronne-Schelfeis

Das Filchner-Ronne-Schelfeis, dessen Kante auf diesem Bild zu sehen ist, gehört zum Antarktischen Eisschild, der vor etwa 14 Millionen Jahren auf seine derzeitige Größe heranwuchs.

Foto: Ralph Timmermann, Alfred-Wegener-Institut

Als vor rund 14 Millionen Jahren der antarktische Eispanzer zu heutiger Größe heranwuchs, wurde es nicht überall kälter auf der Erde, sondern regional auch wärmer. Ein physikalischer Widerspruch? Nein, wie die AWI-Experten nun herausfanden, löste das Eisschildwachstum auf dem antarktischen Kontinent Wind-, Strömungs- und Meereisveränderungen im Südpolarmeer aus, welche am Ende zu den vermeintlich gegensätzlichen Entwicklungen führten. Das berichten die Wissenschaftler in einer neuen Studie, die online im Fachmagazin Nature Geosciences erschienen ist.

Der Eispanzer der Antarktis ist aus erdgeschichtlicher Perspektive betrachtet noch relativ jung. Wie Klimaforscher aus Sedimentproben und Foraminiferen-Kalkschalen wissen, wuchs der Eisschild vor rund 14 Millionen Jahren auf seine heutige Größe heran. Gleichzeitig stieg damals die Oberflächentemperatur des Südozeans um bis zu drei Grad Celsius an – eine scheinbar widersprüchliche Entwicklung, für die Klimawissenschaftler lange Zeit keine schlüssige Erklärung hatten.

„Wenn man sich vorstellt, dass der antarktische Eispanzer in einem Zeitraum von 100 000 Jahren auf seine heutige Größe anwuchs, liegt die Vermutung nahe, dass in dieser Wachstumsperiode sich selbst verstärkende Klimaprozesse einsetzten, die diese Abkühlung weiter vorantrieben. Man könnte zum Beispiel annehmen, dass der größer werdende Eisschild mehr und mehr Sonnenenergie in das Weltall zurückstrahlte, weswegen die Luft über dem Kontinent kälter wurde und es starke ablandige Winde gab, die über das Meer fegten, das Wasser abkühlten und jede Menge Meereis entstehen ließen. Unsere Klimadaten jedoch zeichnen ein anderes Bild“, sagt AWI-Klimaforscher Dr. Gregor Knorr.

Ihm und seinem AWI-Kollegen Prof. Dr. Gerrit Lohmann ist es gelungen, die damaligen Klimabedingungen in einem gekoppelten Atmosphäre-Ozean-Modell abzubilden und auf diese Weise zu untersuchen, welche Veränderungen die Entstehung des antarktischen Eisschildes im Klimasystem auslöste.

„Unsere Simulationsergebnisse zeigen, dass die Lufttemperatur über dem Kontinent tatsächlich um bis zu 22 Grad Celsius abnahm, als der Eispanzer wuchs, was in einigen Regionen des Südpolarmeeres zu einer Abkühlung führte. Gleichzeitig aber stieg im Weddellmeer die Oberflächentemperatur um bis zu sechs Grad Celsius“, sagt Gregor Knorr.

Die AWI-Klimaforscher suchten in ihren Modell-Experimenten nach den Ursachen für diese gegenläufigen Veränderungen und fanden sie beim Wind. „Das Anwachsen des antarktischen Eispanzers führte dazu, dass sich zum Beispiel die Windmuster über dem Weddellmeer veränderten. Dadurch kam es zu einer polwärts gerichteten Strömungsänderung warmen Wassers, gleichzeitig nahm das Meereis in diesem Meeresgebiet ab“, erklärt der AWI-Klimamodellierer.

Diese Veränderungen an der Meeresoberfläche zogen weitere Veränderungen in der Tiefe nach sich, welche wiederum den Temperaturanstieg des Oberflächenwassers auf eine Weise forcierten, wie es die Forscher bisher nicht gekannt hatten.

„Unsere Modellrechnungen haben uns geholfen, ein völlig neues Verständnis für die damaligen Erdsystemprozesse zu entwickeln. Heute können wir erklären, welchen Einfluss die Entstehung des antarktischen Eisschildes auf Temperaturkurven im Südozean jener Zeit hatte und wie die aufgezeichneten Klimaänderungen in marinen Sedimentkernen zustande kamen“, sagt Gregor Knorr.

Gleichzeitig stellen diese neuen Einsichten die Klimawissenschaftler auch vor eine große Herausforderung. „Unsere Ergebnisse zeigen einerseits, dass wir Klimaprozesse mithilfe von Modellen verstehen können, um anschließend Daten aus der Klimageschichte richtig zu interpretieren. Andererseits bestätigt sich aber auch, dass Rückkopplungsmechanismen zwischen einzelnen Klimafaktoren wesentlich komplexer sind, als wir bisher angenommen hatten“, sagt Gerrit Lohmann.

Lassen sich diese neuen Modellrechnungen und Erkenntnisse für Vorhersagen zum aktuellen Klimawandel nutzen? Gregor Knorr: „Nein, nicht direkt. Klimamodelle, mit denen Szenarien für die kommenden 100 Jahre berechnet werden, haben eine viel feinere Auflösung und berücksichtigen nicht die Änderungen der Eisschilde. Uns ging es darum, besser zu verstehen, wie das Klimasystem über einen Zeitraum von 100 000 Jahren und mehr auf einschneidende Veränderungen reagiert. Dennoch ist es nicht auszuschließen, dass ähnliche Mechanismen auch für Klimaänderungen in ferner Zukunft eine Rolle spielen könnten.“

Hinweise für Redaktionen:

Druckbare Fotos des antarktischen Eisschildes finden Sie in der Onlineversion dieser Pressemeldung unter http://www.awi.de/de/aktuelles_und_presse/pressemitteilungen/.

Das Originalpaper ist am 6. April 2014 unter folgendem Titel im Online-Portal von Nature Geoscience erschienen:

Gregor Knorr / Gerrit Lohmann: Climate Warming during Antarctic ice sheet expansion at the Middle Miocene transition. Nature Geoscience, Vol. 7, April 2014, DOI: 10.1038/NGEO2119 (Link: http://www.nature.com/ngeo/journal/vaop/ncurrent/full/ngeo2119.html)

Ihre wissenschaftlichen Ansprechpartner am Alfred-Wegener-Institut sind:

• Dr. Gregor Knorr (Tel.: 0471 4831-1769, E-Mail: Gregor.Knorr(at)awi)
• Prof. Dr. Gerrit Lohmann, (Tel.: 0471 4831-1758, E-Mail: Gerrit.Lohmann(at)awi)

In der AWI-Pressestelle steht Ihnen Sina Löschke unter Tel.: 0471 4831-2008 (E-Mail: medien(at)awi.de) für Rückfragen zur Verfügung.

Folgen Sie dem Alfred-Wegener-Institut auf Twitter (https://twitter.com/#!/AWI_de) und Facebook (http://www.facebook.com/AlfredWegenerInstitut). So erhalten Sie alle aktuellen Nachrichten sowie Informationen zu kleinen Alltagsgeschichten aus dem Institutsleben.

Das Alfred-Wegener-Institut forscht in der Arktis, Antarktis und den Ozeanen der mittleren und hohen Breiten. Es koordiniert die Polarforschung in Deutschland und stellt wichtige Infrastruktur wie den Forschungseisbrecher Polarstern und Stationen in der Arktis und Antarktis für die internationale Wissenschaft zur Verfügung. Das Alfred-Wegener-Institut ist eines der 18 Forschungszentren der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands.

Ralf Röchert | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.awi.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Sensationsfund: Spuren eines Regenwaldes in der Westantarktis
02.04.2020 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Erdbeben auf Island über Telefonglasfaserkabel registriert
25.03.2020 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Belle II liefert erste Ergebnisse: Auf der Suche nach dem Z‘-Boson

Vor ziemlich genau einem Jahr ist das Belle II-Experiment angelaufen. Jetzt veröffentlicht das renommierte Journal Physical Review Letters die ersten Resultate des Detektors. Die Arbeit befasst sich mit einem neuen Teilchen im Zusammenhang mit der Dunklen Materie, die nach heutigem Kenntnisstand etwa 25 Prozent des Universums ausmacht.

Seit etwa einem Jahr nimmt das Belle II-Experiment Daten für physikalische Messungen. Sowohl der Elektron-Positron-Beschleuniger SuperKEKB als auch der...

Im Focus: Belle II yields the first results: In search of the Z′ boson

The Belle II experiment has been collecting data from physical measurements for about one year. After several years of rebuilding work, both the SuperKEKB electron–positron accelerator and the Belle II detector have been improved compared with their predecessors in order to achieve a 40-fold higher data rate.

Scientists at 12 institutes in Germany are involved in constructing and operating the detector, developing evaluation algorithms, and analyzing the data.

Im Focus: Wenn Ionen an ihrem Käfig rütteln

In vielen Bereichen spielen „Elektrolyte“ eine wichtige Rolle: Sie sind bei der Speicherung von Energie in unserem Körper wie auch in Batterien von großer Bedeutung. Um Energie freizusetzen, müssen sich Ionen – geladene Atome – in einer Flüssigkeit, wie bspw. Wasser, bewegen. Bisher war jedoch der präzise Mechanismus, wie genau sie sich durch die Atome und Moleküle der Elektrolyt-Flüssigkeit bewegen, weitgehend unverstanden. Wissenschaftler*innen des Max-Planck-Instituts für Polymerforschung haben nun gezeigt, dass der durch die Bewegung von Ionen bestimmte elektrische Widerstand einer Elektrolyt-Flüssigkeit sich auf mikroskopische Schwingungen dieser gelösten Ionen zurückführen lässt.

Kochsalz wird in der Chemie auch als Natriumchlorid bezeichnet. Löst man Kochsalz in Wasser lösen sich Natrium und Chlorid als positiv bzw. negativ geladene...

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Den Regen für Hydrovoltaik nutzen

Wassertropfen, die auf Oberflächen fallen oder über sie gleiten, können Spuren elektrischer Ladung hinterlassen, so dass sich die Tropfen selbst aufladen. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben dieses Phänomen, das uns auch in unserem Alltag begleitet, nun detailliert untersucht. Sie entwickelten eine Methode zur Quantifizierung der Ladungserzeugung und entwickelten zusätzlich ein theoretisches Modell zum besseren Verständnis. Nach Ansicht der Wissenschaftler könnte der beobachtete Effekt eine Möglichkeit zur Energieerzeugung und ein wichtiger Baustein zum Verständnis der Reibungselektrizität sein.

Wassertropfen, die über nicht leitende Oberflächen gleiten, sind überall in unserem Leben zu finden: Vom Tropfen einer Kaffeemaschine über eine Dusche bis hin...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium AWK’21 findet am 10. und 11. Juni 2021 statt

06.04.2020 | Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Zacken in der Viruskrone

07.04.2020 | Biowissenschaften Chemie

Auf der Suche nach neuen Antibiotika

07.04.2020 | Biowissenschaften Chemie

Belle II liefert erste Ergebnisse: Auf der Suche nach dem Z‘-Boson

07.04.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics