Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

AWI-Forscher entschlüsseln Klimaparadox aus dem Miozän

08.04.2014

Wachstum des antarktischen Eisschildes löste Erwärmung im Südozean aus

Wissenschaftler des Alfred-Wegener-Institutes, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI), haben in aufwendigen Modellrechnungen ein vermeintliches Klimaparadox aus dem Miozän-Erdzeitalter entschlüsselt.


Der Südozean

Als vor 14 Millionen Jahren der Antarktische Eispanzer zu seiner aktuellen Größe heranwuchs, erwärmte sich das Oberflächenwasser des Südozeans.

Foto: Frank Rödel, Alfred-Wegener-Institut


Das Filchner-Ronne-Schelfeis

Das Filchner-Ronne-Schelfeis, dessen Kante auf diesem Bild zu sehen ist, gehört zum Antarktischen Eisschild, der vor etwa 14 Millionen Jahren auf seine derzeitige Größe heranwuchs.

Foto: Ralph Timmermann, Alfred-Wegener-Institut

Als vor rund 14 Millionen Jahren der antarktische Eispanzer zu heutiger Größe heranwuchs, wurde es nicht überall kälter auf der Erde, sondern regional auch wärmer. Ein physikalischer Widerspruch? Nein, wie die AWI-Experten nun herausfanden, löste das Eisschildwachstum auf dem antarktischen Kontinent Wind-, Strömungs- und Meereisveränderungen im Südpolarmeer aus, welche am Ende zu den vermeintlich gegensätzlichen Entwicklungen führten. Das berichten die Wissenschaftler in einer neuen Studie, die online im Fachmagazin Nature Geosciences erschienen ist.

Der Eispanzer der Antarktis ist aus erdgeschichtlicher Perspektive betrachtet noch relativ jung. Wie Klimaforscher aus Sedimentproben und Foraminiferen-Kalkschalen wissen, wuchs der Eisschild vor rund 14 Millionen Jahren auf seine heutige Größe heran. Gleichzeitig stieg damals die Oberflächentemperatur des Südozeans um bis zu drei Grad Celsius an – eine scheinbar widersprüchliche Entwicklung, für die Klimawissenschaftler lange Zeit keine schlüssige Erklärung hatten.

„Wenn man sich vorstellt, dass der antarktische Eispanzer in einem Zeitraum von 100 000 Jahren auf seine heutige Größe anwuchs, liegt die Vermutung nahe, dass in dieser Wachstumsperiode sich selbst verstärkende Klimaprozesse einsetzten, die diese Abkühlung weiter vorantrieben. Man könnte zum Beispiel annehmen, dass der größer werdende Eisschild mehr und mehr Sonnenenergie in das Weltall zurückstrahlte, weswegen die Luft über dem Kontinent kälter wurde und es starke ablandige Winde gab, die über das Meer fegten, das Wasser abkühlten und jede Menge Meereis entstehen ließen. Unsere Klimadaten jedoch zeichnen ein anderes Bild“, sagt AWI-Klimaforscher Dr. Gregor Knorr.

Ihm und seinem AWI-Kollegen Prof. Dr. Gerrit Lohmann ist es gelungen, die damaligen Klimabedingungen in einem gekoppelten Atmosphäre-Ozean-Modell abzubilden und auf diese Weise zu untersuchen, welche Veränderungen die Entstehung des antarktischen Eisschildes im Klimasystem auslöste.

„Unsere Simulationsergebnisse zeigen, dass die Lufttemperatur über dem Kontinent tatsächlich um bis zu 22 Grad Celsius abnahm, als der Eispanzer wuchs, was in einigen Regionen des Südpolarmeeres zu einer Abkühlung führte. Gleichzeitig aber stieg im Weddellmeer die Oberflächentemperatur um bis zu sechs Grad Celsius“, sagt Gregor Knorr.

Die AWI-Klimaforscher suchten in ihren Modell-Experimenten nach den Ursachen für diese gegenläufigen Veränderungen und fanden sie beim Wind. „Das Anwachsen des antarktischen Eispanzers führte dazu, dass sich zum Beispiel die Windmuster über dem Weddellmeer veränderten. Dadurch kam es zu einer polwärts gerichteten Strömungsänderung warmen Wassers, gleichzeitig nahm das Meereis in diesem Meeresgebiet ab“, erklärt der AWI-Klimamodellierer.

Diese Veränderungen an der Meeresoberfläche zogen weitere Veränderungen in der Tiefe nach sich, welche wiederum den Temperaturanstieg des Oberflächenwassers auf eine Weise forcierten, wie es die Forscher bisher nicht gekannt hatten.

„Unsere Modellrechnungen haben uns geholfen, ein völlig neues Verständnis für die damaligen Erdsystemprozesse zu entwickeln. Heute können wir erklären, welchen Einfluss die Entstehung des antarktischen Eisschildes auf Temperaturkurven im Südozean jener Zeit hatte und wie die aufgezeichneten Klimaänderungen in marinen Sedimentkernen zustande kamen“, sagt Gregor Knorr.

Gleichzeitig stellen diese neuen Einsichten die Klimawissenschaftler auch vor eine große Herausforderung. „Unsere Ergebnisse zeigen einerseits, dass wir Klimaprozesse mithilfe von Modellen verstehen können, um anschließend Daten aus der Klimageschichte richtig zu interpretieren. Andererseits bestätigt sich aber auch, dass Rückkopplungsmechanismen zwischen einzelnen Klimafaktoren wesentlich komplexer sind, als wir bisher angenommen hatten“, sagt Gerrit Lohmann.

Lassen sich diese neuen Modellrechnungen und Erkenntnisse für Vorhersagen zum aktuellen Klimawandel nutzen? Gregor Knorr: „Nein, nicht direkt. Klimamodelle, mit denen Szenarien für die kommenden 100 Jahre berechnet werden, haben eine viel feinere Auflösung und berücksichtigen nicht die Änderungen der Eisschilde. Uns ging es darum, besser zu verstehen, wie das Klimasystem über einen Zeitraum von 100 000 Jahren und mehr auf einschneidende Veränderungen reagiert. Dennoch ist es nicht auszuschließen, dass ähnliche Mechanismen auch für Klimaänderungen in ferner Zukunft eine Rolle spielen könnten.“

Hinweise für Redaktionen:

Druckbare Fotos des antarktischen Eisschildes finden Sie in der Onlineversion dieser Pressemeldung unter http://www.awi.de/de/aktuelles_und_presse/pressemitteilungen/.

Das Originalpaper ist am 6. April 2014 unter folgendem Titel im Online-Portal von Nature Geoscience erschienen:

Gregor Knorr / Gerrit Lohmann: Climate Warming during Antarctic ice sheet expansion at the Middle Miocene transition. Nature Geoscience, Vol. 7, April 2014, DOI: 10.1038/NGEO2119 (Link: http://www.nature.com/ngeo/journal/vaop/ncurrent/full/ngeo2119.html)

Ihre wissenschaftlichen Ansprechpartner am Alfred-Wegener-Institut sind:

• Dr. Gregor Knorr (Tel.: 0471 4831-1769, E-Mail: Gregor.Knorr(at)awi)
• Prof. Dr. Gerrit Lohmann, (Tel.: 0471 4831-1758, E-Mail: Gerrit.Lohmann(at)awi)

In der AWI-Pressestelle steht Ihnen Sina Löschke unter Tel.: 0471 4831-2008 (E-Mail: medien(at)awi.de) für Rückfragen zur Verfügung.

Folgen Sie dem Alfred-Wegener-Institut auf Twitter (https://twitter.com/#!/AWI_de) und Facebook (http://www.facebook.com/AlfredWegenerInstitut). So erhalten Sie alle aktuellen Nachrichten sowie Informationen zu kleinen Alltagsgeschichten aus dem Institutsleben.

Das Alfred-Wegener-Institut forscht in der Arktis, Antarktis und den Ozeanen der mittleren und hohen Breiten. Es koordiniert die Polarforschung in Deutschland und stellt wichtige Infrastruktur wie den Forschungseisbrecher Polarstern und Stationen in der Arktis und Antarktis für die internationale Wissenschaft zur Verfügung. Das Alfred-Wegener-Institut ist eines der 18 Forschungszentren der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands.

Ralf Röchert | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.awi.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Beitrag der Küsten zum Klimawandel womöglich unterschätzt
11.11.2019 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht Turbulenz sorgt für Eis in Wolken
08.11.2019 | Leibniz-Institut für Troposphärenforschung e. V.

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetisches Tuning auf der Nanoskala

Magnetische Nanostrukturen maßgeschneidert herzustellen und nanomagnetische Materialeigenschaften gezielt zu beeinflussen, daran arbeiten Physiker des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) gemeinsam mit Kollegen des Leibniz-Instituts für Festkörper- und Werkstoffforschung (IFW) Dresden und der Universität Glasgow. Zum Einsatz kommt ein spezielles Mikroskop am Ionenstrahlzentrum des HZDR, dessen hauchdünner Strahl aus schnellen geladenen Atomen (Ionen) periodisch angeordnete und stabile Nanomagnete in einem Probenmaterial erzeugen kann. Es dient aber auch dazu, die magnetischen Eigenschaften von Kohlenstoff-Nanoröhrchen zu optimieren.

„Materialien im Nanometerbereich magnetisch zu tunen birgt ein großes Potenzial für die Herstellung modernster elektronischer Bauteile. Für unsere magnetischen...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: REANIMA - für ein neues Paradigma der Herzregeneration

Endogene Mechanismen der Geweberegeneration sind ein innovativer Forschungsansatz, um Herzmuskelschäden zu begegnen. Ihnen widmet sich das internationale REANIMA-Projekt, an dem zwölf europäische Forschungszentren beteiligt sind. Das am CNIC (Centro Nacional de Investigaciones Cardiovasculares) in Madrid koordinierte Projekt startet im Januar 2020 und wird von der Europäischen Kommission mit 8 Millionen Euro über fünf Jahre gefördert.

Herz-Kreislauf-Erkrankungen verursachen weltweit die meisten Todesfälle. Herzinsuffizienz ist geradezu eine Epidemie, die neben der persönlichen Belastung mit...

Im Focus: Göttinger Chemiker weisen kleinstmögliche Eiskristalle nach

Temperaturabhängig gefriert Wasser zu Eis und umgekehrt. Dieser Vorgang, in der Wissenschaft als Phasenübergang bezeichnet, ist im Alltag gut bekannt. Um aber ein stabiles Gitter für Eiskristalle zu erreichen, ist eine Mindestanzahl an Molekülen nötig, ansonsten ist das Konstrukt instabil. Bisher konnte dieser Wert nur grob geschätzt werden. Einem deutsch-amerikanischen Forschungsteam unter Leitung des Chemikers Prof. Dr. Thomas Zeuch vom Institut für Physikalische Chemie der Universität Göttingen ist es nun gelungen, die Größe kleinstmöglicher Eiskristalle genau zu bestimmen. Die Forschungsergebnisse sind in der Fachzeitschrift Proceedings of the National Academy of Science erschienen.

Knapp 100 Wassermoleküle sind nötig, um einen Eiskristall in seiner kleinstmöglichen Ausprägung zu formen. Nachweisen konnten die Wissenschaftler zudem, dass...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Mediation – Konflikte konstruktiv lösen

12.11.2019 | Veranstaltungen

Hochleistungsmaterialien mit neuen Eigenschaften im Fokus von Partnern aus Wissenschaft und Wirtschaft

11.11.2019 | Veranstaltungen

Weniger Lärm in Innenstädten durch neue Gebäudekonzepte

08.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Selbstorganisation weicher Materie im Detail verstehen

12.11.2019 | Physik Astronomie

Magnetisches Tuning auf der Nanoskala

12.11.2019 | Physik Astronomie

»KaSiLi«: Bessere Batterien für Elektroautos »Made in Germany«

12.11.2019 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics