Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

AWI-Forscher entschlüsseln Klimaparadox aus dem Miozän

08.04.2014

Wachstum des antarktischen Eisschildes löste Erwärmung im Südozean aus

Wissenschaftler des Alfred-Wegener-Institutes, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI), haben in aufwendigen Modellrechnungen ein vermeintliches Klimaparadox aus dem Miozän-Erdzeitalter entschlüsselt.


Der Südozean

Als vor 14 Millionen Jahren der Antarktische Eispanzer zu seiner aktuellen Größe heranwuchs, erwärmte sich das Oberflächenwasser des Südozeans.

Foto: Frank Rödel, Alfred-Wegener-Institut


Das Filchner-Ronne-Schelfeis

Das Filchner-Ronne-Schelfeis, dessen Kante auf diesem Bild zu sehen ist, gehört zum Antarktischen Eisschild, der vor etwa 14 Millionen Jahren auf seine derzeitige Größe heranwuchs.

Foto: Ralph Timmermann, Alfred-Wegener-Institut

Als vor rund 14 Millionen Jahren der antarktische Eispanzer zu heutiger Größe heranwuchs, wurde es nicht überall kälter auf der Erde, sondern regional auch wärmer. Ein physikalischer Widerspruch? Nein, wie die AWI-Experten nun herausfanden, löste das Eisschildwachstum auf dem antarktischen Kontinent Wind-, Strömungs- und Meereisveränderungen im Südpolarmeer aus, welche am Ende zu den vermeintlich gegensätzlichen Entwicklungen führten. Das berichten die Wissenschaftler in einer neuen Studie, die online im Fachmagazin Nature Geosciences erschienen ist.

Der Eispanzer der Antarktis ist aus erdgeschichtlicher Perspektive betrachtet noch relativ jung. Wie Klimaforscher aus Sedimentproben und Foraminiferen-Kalkschalen wissen, wuchs der Eisschild vor rund 14 Millionen Jahren auf seine heutige Größe heran. Gleichzeitig stieg damals die Oberflächentemperatur des Südozeans um bis zu drei Grad Celsius an – eine scheinbar widersprüchliche Entwicklung, für die Klimawissenschaftler lange Zeit keine schlüssige Erklärung hatten.

„Wenn man sich vorstellt, dass der antarktische Eispanzer in einem Zeitraum von 100 000 Jahren auf seine heutige Größe anwuchs, liegt die Vermutung nahe, dass in dieser Wachstumsperiode sich selbst verstärkende Klimaprozesse einsetzten, die diese Abkühlung weiter vorantrieben. Man könnte zum Beispiel annehmen, dass der größer werdende Eisschild mehr und mehr Sonnenenergie in das Weltall zurückstrahlte, weswegen die Luft über dem Kontinent kälter wurde und es starke ablandige Winde gab, die über das Meer fegten, das Wasser abkühlten und jede Menge Meereis entstehen ließen. Unsere Klimadaten jedoch zeichnen ein anderes Bild“, sagt AWI-Klimaforscher Dr. Gregor Knorr.

Ihm und seinem AWI-Kollegen Prof. Dr. Gerrit Lohmann ist es gelungen, die damaligen Klimabedingungen in einem gekoppelten Atmosphäre-Ozean-Modell abzubilden und auf diese Weise zu untersuchen, welche Veränderungen die Entstehung des antarktischen Eisschildes im Klimasystem auslöste.

„Unsere Simulationsergebnisse zeigen, dass die Lufttemperatur über dem Kontinent tatsächlich um bis zu 22 Grad Celsius abnahm, als der Eispanzer wuchs, was in einigen Regionen des Südpolarmeeres zu einer Abkühlung führte. Gleichzeitig aber stieg im Weddellmeer die Oberflächentemperatur um bis zu sechs Grad Celsius“, sagt Gregor Knorr.

Die AWI-Klimaforscher suchten in ihren Modell-Experimenten nach den Ursachen für diese gegenläufigen Veränderungen und fanden sie beim Wind. „Das Anwachsen des antarktischen Eispanzers führte dazu, dass sich zum Beispiel die Windmuster über dem Weddellmeer veränderten. Dadurch kam es zu einer polwärts gerichteten Strömungsänderung warmen Wassers, gleichzeitig nahm das Meereis in diesem Meeresgebiet ab“, erklärt der AWI-Klimamodellierer.

Diese Veränderungen an der Meeresoberfläche zogen weitere Veränderungen in der Tiefe nach sich, welche wiederum den Temperaturanstieg des Oberflächenwassers auf eine Weise forcierten, wie es die Forscher bisher nicht gekannt hatten.

„Unsere Modellrechnungen haben uns geholfen, ein völlig neues Verständnis für die damaligen Erdsystemprozesse zu entwickeln. Heute können wir erklären, welchen Einfluss die Entstehung des antarktischen Eisschildes auf Temperaturkurven im Südozean jener Zeit hatte und wie die aufgezeichneten Klimaänderungen in marinen Sedimentkernen zustande kamen“, sagt Gregor Knorr.

Gleichzeitig stellen diese neuen Einsichten die Klimawissenschaftler auch vor eine große Herausforderung. „Unsere Ergebnisse zeigen einerseits, dass wir Klimaprozesse mithilfe von Modellen verstehen können, um anschließend Daten aus der Klimageschichte richtig zu interpretieren. Andererseits bestätigt sich aber auch, dass Rückkopplungsmechanismen zwischen einzelnen Klimafaktoren wesentlich komplexer sind, als wir bisher angenommen hatten“, sagt Gerrit Lohmann.

Lassen sich diese neuen Modellrechnungen und Erkenntnisse für Vorhersagen zum aktuellen Klimawandel nutzen? Gregor Knorr: „Nein, nicht direkt. Klimamodelle, mit denen Szenarien für die kommenden 100 Jahre berechnet werden, haben eine viel feinere Auflösung und berücksichtigen nicht die Änderungen der Eisschilde. Uns ging es darum, besser zu verstehen, wie das Klimasystem über einen Zeitraum von 100 000 Jahren und mehr auf einschneidende Veränderungen reagiert. Dennoch ist es nicht auszuschließen, dass ähnliche Mechanismen auch für Klimaänderungen in ferner Zukunft eine Rolle spielen könnten.“

Hinweise für Redaktionen:

Druckbare Fotos des antarktischen Eisschildes finden Sie in der Onlineversion dieser Pressemeldung unter http://www.awi.de/de/aktuelles_und_presse/pressemitteilungen/.

Das Originalpaper ist am 6. April 2014 unter folgendem Titel im Online-Portal von Nature Geoscience erschienen:

Gregor Knorr / Gerrit Lohmann: Climate Warming during Antarctic ice sheet expansion at the Middle Miocene transition. Nature Geoscience, Vol. 7, April 2014, DOI: 10.1038/NGEO2119 (Link: http://www.nature.com/ngeo/journal/vaop/ncurrent/full/ngeo2119.html)

Ihre wissenschaftlichen Ansprechpartner am Alfred-Wegener-Institut sind:

• Dr. Gregor Knorr (Tel.: 0471 4831-1769, E-Mail: Gregor.Knorr(at)awi)
• Prof. Dr. Gerrit Lohmann, (Tel.: 0471 4831-1758, E-Mail: Gerrit.Lohmann(at)awi)

In der AWI-Pressestelle steht Ihnen Sina Löschke unter Tel.: 0471 4831-2008 (E-Mail: medien(at)awi.de) für Rückfragen zur Verfügung.

Folgen Sie dem Alfred-Wegener-Institut auf Twitter (https://twitter.com/#!/AWI_de) und Facebook (http://www.facebook.com/AlfredWegenerInstitut). So erhalten Sie alle aktuellen Nachrichten sowie Informationen zu kleinen Alltagsgeschichten aus dem Institutsleben.

Das Alfred-Wegener-Institut forscht in der Arktis, Antarktis und den Ozeanen der mittleren und hohen Breiten. Es koordiniert die Polarforschung in Deutschland und stellt wichtige Infrastruktur wie den Forschungseisbrecher Polarstern und Stationen in der Arktis und Antarktis für die internationale Wissenschaft zur Verfügung. Das Alfred-Wegener-Institut ist eines der 18 Forschungszentren der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands.

Ralf Röchert | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.awi.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Der Januskopf des südasiatischen Monsuns
15.06.2018 | Max-Planck-Institut für Chemie

nachricht Was das Eis der West-Antarktis vor 10.000 Jahren gerettet hat, wird ihr heute nicht helfen
14.06.2018 | Potsdam-Institut für Klimafolgenforschung

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics